Publikation:

Digital core repository coupled with machine learning as a tool to classify and assess petrophysical rock properties

Lade...
Vorschaubild

Dateien

Alperovich_2-u8ijrueg73ur2.pdf
Alperovich_2-u8ijrueg73ur2.pdfGröße: 1.57 MBDownloads: 318

Datum

2020

Autor:innen

Hébert, Vanessa
Porcher, Thierry
Planes, Valentin
Léger, Marie
Rodriguez, Olivier
Youssef, Souhail

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SCHEMBRE-MCCABE, Josephina, ed., Holger OTT, ed.. E3S Web of Conferences : The 2019 International Symposium of the Society of Core Analysts (SCA 2019). EDP Sciences, 2020, 01003. E3S Web of Conferences. 146. eISSN 2267-1242. Available under: doi: 10.1051/e3sconf/202014601003

Zusammenfassung

To make efficient use of image-based rock physics workflow, it is necessary to optimize different criteria, among which: quantity, representativeness, size and resolution. Advances in artificial intelligence give insights of databases potential. Deep learning methods not only enable to classify rock images, but could also help to estimate their petrophysical properties. In this study we prepare a set of thousands high-resolution 3D images captured in a set of four reservoir rock samples as a base for learning and training. The Voxilon software computes numerical petrophysical analysis. We identify different descriptors directly from 3D images used as inputs. We use convolutional neural network modelling with supervised training using TensorFlow framework. Using approximately fifteen thousand 2D images to drive the classification network, the test on thousand unseen images shows any error of rock type misclassification. The porosity trend provides good fit between digital benchmark datasets and machine learning tests. In a few minutes, database screening classifies carbonates and sandstones images and associates the porosity values and distribution. This work aims at conveying the potential of deep learning method in reservoir characterization to petroleum research, to illustrate how a smart image-based rock physics database at industrial scale can swiftly give access to rock properties.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

The 2019 International Symposium of the Society of Core Analysts (SCA 2019), 26. Aug. 2019 - 30. Aug. 2019, Pau
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690HÉBERT, Vanessa, Thierry PORCHER, Valentin PLANES, Marie LÉGER, Anna ALPEROVICH, Bastian GOLDLÜCKE, Olivier RODRIGUEZ, Souhail YOUSSEF, 2020. Digital core repository coupled with machine learning as a tool to classify and assess petrophysical rock properties. The 2019 International Symposium of the Society of Core Analysts (SCA 2019). Pau, 26. Aug. 2019 - 30. Aug. 2019. In: SCHEMBRE-MCCABE, Josephina, ed., Holger OTT, ed.. E3S Web of Conferences : The 2019 International Symposium of the Society of Core Analysts (SCA 2019). EDP Sciences, 2020, 01003. E3S Web of Conferences. 146. eISSN 2267-1242. Available under: doi: 10.1051/e3sconf/202014601003
BibTex
@inproceedings{Hebert2020-02-05Digit-48873,
  year={2020},
  doi={10.1051/e3sconf/202014601003},
  title={Digital core repository coupled with machine learning as a tool to classify and assess petrophysical rock properties},
  number={146},
  publisher={EDP Sciences},
  series={E3S Web of Conferences},
  booktitle={E3S Web of Conferences : The 2019 International Symposium of the Society of Core Analysts (SCA 2019)},
  editor={Schembre-McCabe, Josephina and Ott, Holger},
  author={Hébert, Vanessa and Porcher, Thierry and Planes, Valentin and Léger, Marie and Alperovich, Anna and Goldlücke, Bastian and Rodriguez, Olivier and Youssef, Souhail},
  note={Article Number: 01003}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48873">
    <dcterms:abstract xml:lang="eng">To make efficient use of image-based rock physics workflow, it is necessary to optimize different criteria, among which: quantity, representativeness, size and resolution. Advances in artificial intelligence give insights of databases potential. Deep learning methods not only enable to classify rock images, but could also help to estimate their petrophysical properties. In this study we prepare a set of thousands high-resolution 3D images captured in a set of four reservoir rock samples as a base for learning and training. The Voxilon software computes numerical petrophysical analysis. We identify different descriptors directly from 3D images used as inputs. We use convolutional neural network modelling with supervised training using TensorFlow framework. Using approximately fifteen thousand 2D images to drive the classification network, the test on thousand unseen images shows any error of rock type misclassification. The porosity trend provides good fit between digital benchmark datasets and machine learning tests. In a few minutes, database screening classifies carbonates and sandstones images and associates the porosity values and distribution. This work aims at conveying the potential of deep learning method in reservoir characterization to petroleum research, to illustrate how a smart image-based rock physics database at industrial scale can swiftly give access to rock properties.</dcterms:abstract>
    <dc:contributor>Léger, Marie</dc:contributor>
    <dc:creator>Rodriguez, Olivier</dc:creator>
    <dc:creator>Planes, Valentin</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-02T09:14:07Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48873/3/Alperovich_2-u8ijrueg73ur2.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Digital core repository coupled with machine learning as a tool to classify and assess petrophysical rock properties</dcterms:title>
    <dc:creator>Léger, Marie</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-02T09:14:07Z</dc:date>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:issued>2020-02-05</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48873/3/Alperovich_2-u8ijrueg73ur2.pdf"/>
    <dc:creator>Alperovich, Anna</dc:creator>
    <dc:contributor>Hébert, Vanessa</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Youssef, Souhail</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48873"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Alperovich, Anna</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hébert, Vanessa</dc:creator>
    <dc:contributor>Rodriguez, Olivier</dc:contributor>
    <dc:creator>Porcher, Thierry</dc:creator>
    <dc:contributor>Planes, Valentin</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Youssef, Souhail</dc:creator>
    <dc:contributor>Porcher, Thierry</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen