Publikation:

Obstructions to Combinatorial Formulas for Plethysm

Lade...
Vorschaubild

Dateien

Kahle_2-uc3bgau0qi5e3.pdf
Kahle_2-uc3bgau0qi5e3.pdfGröße: 244.06 KBDownloads: 151

Datum

2018

Autor:innen

Kahle, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Electronic Journal of Combinatorics. International Press. 2018, 25(1), P1.41. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/6597

Zusammenfassung

Motivated by questions of Mulmuley and Stanley we investigate quasi-polynomials arising in formulas for plethysm. We demonstrate, on the examples of S3(Sk) and Sk(S3), that these need not be counting functions of inhomogeneous polytopes of dimension equal to the degree of the quasi-polynomial. It follows that these functions are not, in general, counting functions of lattice points in any scaled convex bodies, even when restricted to single rays. Our results also apply to special rectangular Kronecker coefficients.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Representation theory, Plethysm, Ehrhart quasi-polynomial, Kronecker coefficients, Lattice point counting

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAHLE, Thomas, Mateusz MICHALEK, 2018. Obstructions to Combinatorial Formulas for Plethysm. In: The Electronic Journal of Combinatorics. International Press. 2018, 25(1), P1.41. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/6597
BibTex
@article{Kahle2018Obstr-53572,
  year={2018},
  doi={10.37236/6597},
  title={Obstructions to Combinatorial Formulas for Plethysm},
  number={1},
  volume={25},
  issn={1097-1440},
  journal={The Electronic Journal of Combinatorics},
  author={Kahle, Thomas and Michalek, Mateusz},
  note={Article Number: P1.41}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53572">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-30T13:29:27Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53572/1/Kahle_2-uc3bgau0qi5e3.pdf"/>
    <dcterms:title>Obstructions to Combinatorial Formulas for Plethysm</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kahle, Thomas</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53572"/>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dcterms:abstract xml:lang="eng">Motivated by questions of Mulmuley and Stanley we investigate quasi-polynomials arising in formulas for plethysm. We demonstrate, on the examples of S&lt;sup&gt;3&lt;/sup&gt;(S&lt;sup&gt;k&lt;/sup&gt;) and S&lt;sup&gt;k&lt;/sup&gt;(S&lt;sup&gt;3&lt;/sup&gt;), that these need not be counting functions of inhomogeneous polytopes of dimension equal to the degree of the quasi-polynomial. It follows that these functions are not, in general, counting functions of lattice points in any scaled convex bodies, even when restricted to single rays. Our results also apply to special rectangular Kronecker coefficients.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-30T13:29:27Z</dcterms:available>
    <dc:creator>Kahle, Thomas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53572/1/Kahle_2-uc3bgau0qi5e3.pdf"/>
    <dcterms:issued>2018</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen