Obstructions to Combinatorial Formulas for Plethysm

Lade...
Vorschaubild
Dateien
Kahle_2-uc3bgau0qi5e3.pdf
Kahle_2-uc3bgau0qi5e3.pdfGröße: 244.06 KBDownloads: 145
Datum
2018
Autor:innen
Kahle, Thomas
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Electronic Journal of Combinatorics. International Press. 2018, 25(1), P1.41. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/6597
Zusammenfassung

Motivated by questions of Mulmuley and Stanley we investigate quasi-polynomials arising in formulas for plethysm. We demonstrate, on the examples of S3(Sk) and Sk(S3), that these need not be counting functions of inhomogeneous polytopes of dimension equal to the degree of the quasi-polynomial. It follows that these functions are not, in general, counting functions of lattice points in any scaled convex bodies, even when restricted to single rays. Our results also apply to special rectangular Kronecker coefficients.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Representation theory, Plethysm, Ehrhart quasi-polynomial, Kronecker coefficients, Lattice point counting
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KAHLE, Thomas, Mateusz MICHALEK, 2018. Obstructions to Combinatorial Formulas for Plethysm. In: The Electronic Journal of Combinatorics. International Press. 2018, 25(1), P1.41. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/6597
BibTex
@article{Kahle2018Obstr-53572,
  year={2018},
  doi={10.37236/6597},
  title={Obstructions to Combinatorial Formulas for Plethysm},
  number={1},
  volume={25},
  issn={1097-1440},
  journal={The Electronic Journal of Combinatorics},
  author={Kahle, Thomas and Michalek, Mateusz},
  note={Article Number: P1.41}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53572">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-30T13:29:27Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53572/1/Kahle_2-uc3bgau0qi5e3.pdf"/>
    <dcterms:title>Obstructions to Combinatorial Formulas for Plethysm</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kahle, Thomas</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53572"/>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dcterms:abstract xml:lang="eng">Motivated by questions of Mulmuley and Stanley we investigate quasi-polynomials arising in formulas for plethysm. We demonstrate, on the examples of S&lt;sup&gt;3&lt;/sup&gt;(S&lt;sup&gt;k&lt;/sup&gt;) and S&lt;sup&gt;k&lt;/sup&gt;(S&lt;sup&gt;3&lt;/sup&gt;), that these need not be counting functions of inhomogeneous polytopes of dimension equal to the degree of the quasi-polynomial. It follows that these functions are not, in general, counting functions of lattice points in any scaled convex bodies, even when restricted to single rays. Our results also apply to special rectangular Kronecker coefficients.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-30T13:29:27Z</dcterms:available>
    <dc:creator>Kahle, Thomas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53572/1/Kahle_2-uc3bgau0qi5e3.pdf"/>
    <dcterms:issued>2018</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen