Optimizing feature pooling and prediction models of VQA algorithms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we propose a strategy to optimize feature pooling and prediction models of video quality assessment (VQA) algorithms with a much smaller number of parameters than methods based on machine learning, such as neural networks. Based on optimization, the proposed mapping strategy is composed of a global linear model for pooling extracted features, a simple linear model for local alignment in which local factors depend on source videos, and a non-linear model for quality calibration. Also, a reduced-reference VQA algorithm is proposed to predict the local factors from the source video. In the IRCCyN/IVC video database of content influence and the LIVE mobile video database, the performance of VQA algorithms is improved significantly by local alignment. The proposed mapping strategy with prediction of local factors outperforms one no-reference VQA metric and is comparable to one full-reference VQA metric. Thus predicting the local factors in local alignment based on video content will be a promising new approach for VQA.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHU, Kongfeng, Marcus BARKOWSKY, Minmin SHEN, Patrick LE CALLET, Dietmar SAUPE, 2014. Optimizing feature pooling and prediction models of VQA algorithms. IEEE International Conference on Image Processing. Paris, 27. Okt. 2014 - 30. Okt. 2014. In: IEEE, , ed.. 2014 IEEE International Conference on Image Processing : October 27-30, 2014 ; CNIT La Défense, Paris, France. IEEE, 2014, pp. 541-545. ISBN 978-1-4799-5751-4. Available under: doi: 10.1109/ICIP.2014.7025108BibTex
@inproceedings{Zhu2014Optim-30287, year={2014}, doi={10.1109/ICIP.2014.7025108}, title={Optimizing feature pooling and prediction models of VQA algorithms}, isbn={978-1-4799-5751-4}, publisher={IEEE}, booktitle={2014 IEEE International Conference on Image Processing : October 27-30, 2014 ; CNIT La Défense, Paris, France}, pages={541--545}, editor={IEEE}, author={Zhu, Kongfeng and Barkowsky, Marcus and Shen, Minmin and Le Callet, Patrick and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30287"> <dc:creator>Le Callet, Patrick</dc:creator> <dc:contributor>Shen, Minmin</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">In this paper, we propose a strategy to optimize feature pooling and prediction models of video quality assessment (VQA) algorithms with a much smaller number of parameters than methods based on machine learning, such as neural networks. Based on optimization, the proposed mapping strategy is composed of a global linear model for pooling extracted features, a simple linear model for local alignment in which local factors depend on source videos, and a non-linear model for quality calibration. Also, a reduced-reference VQA algorithm is proposed to predict the local factors from the source video. In the IRCCyN/IVC video database of content influence and the LIVE mobile video database, the performance of VQA algorithms is improved significantly by local alignment. The proposed mapping strategy with prediction of local factors outperforms one no-reference VQA metric and is comparable to one full-reference VQA metric. Thus predicting the local factors in local alignment based on video content will be a promising new approach for VQA.</dcterms:abstract> <dc:creator>Zhu, Kongfeng</dc:creator> <dc:creator>Barkowsky, Marcus</dc:creator> <dc:creator>Shen, Minmin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Barkowsky, Marcus</dc:contributor> <dcterms:title>Optimizing feature pooling and prediction models of VQA algorithms</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:09:57Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2014</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30287"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:09:57Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:contributor>Zhu, Kongfeng</dc:contributor> <dc:contributor>Le Callet, Patrick</dc:contributor> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>