Publikation:

Optimizing feature pooling and prediction models of VQA algorithms

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Barkowsky, Marcus
Le Callet, Patrick

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

IEEE, , ed.. 2014 IEEE International Conference on Image Processing : October 27-30, 2014 ; CNIT La Défense, Paris, France. IEEE, 2014, pp. 541-545. ISBN 978-1-4799-5751-4. Available under: doi: 10.1109/ICIP.2014.7025108

Zusammenfassung

In this paper, we propose a strategy to optimize feature pooling and prediction models of video quality assessment (VQA) algorithms with a much smaller number of parameters than methods based on machine learning, such as neural networks. Based on optimization, the proposed mapping strategy is composed of a global linear model for pooling extracted features, a simple linear model for local alignment in which local factors depend on source videos, and a non-linear model for quality calibration. Also, a reduced-reference VQA algorithm is proposed to predict the local factors from the source video. In the IRCCyN/IVC video database of content influence and the LIVE mobile video database, the performance of VQA algorithms is improved significantly by local alignment. The proposed mapping strategy with prediction of local factors outperforms one no-reference VQA metric and is comparable to one full-reference VQA metric. Thus predicting the local factors in local alignment based on video content will be a promising new approach for VQA.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IEEE International Conference on Image Processing, 27. Okt. 2014 - 30. Okt. 2014, Paris
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHU, Kongfeng, Marcus BARKOWSKY, Minmin SHEN, Patrick LE CALLET, Dietmar SAUPE, 2014. Optimizing feature pooling and prediction models of VQA algorithms. IEEE International Conference on Image Processing. Paris, 27. Okt. 2014 - 30. Okt. 2014. In: IEEE, , ed.. 2014 IEEE International Conference on Image Processing : October 27-30, 2014 ; CNIT La Défense, Paris, France. IEEE, 2014, pp. 541-545. ISBN 978-1-4799-5751-4. Available under: doi: 10.1109/ICIP.2014.7025108
BibTex
@inproceedings{Zhu2014Optim-30287,
  year={2014},
  doi={10.1109/ICIP.2014.7025108},
  title={Optimizing feature pooling and prediction models of VQA algorithms},
  isbn={978-1-4799-5751-4},
  publisher={IEEE},
  booktitle={2014 IEEE International Conference on Image Processing : October 27-30, 2014 ; CNIT La Défense, Paris, France},
  pages={541--545},
  editor={IEEE},
  author={Zhu, Kongfeng and Barkowsky, Marcus and Shen, Minmin and Le Callet, Patrick and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30287">
    <dc:creator>Le Callet, Patrick</dc:creator>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">In this paper, we propose a strategy to optimize feature pooling and prediction models of video quality assessment (VQA) algorithms with a much smaller number of parameters than methods based on machine learning, such as neural networks. Based on optimization, the proposed mapping strategy is composed of a global linear model for pooling extracted features, a simple linear model for local alignment in which local factors depend on source videos, and a non-linear model for quality calibration. Also, a reduced-reference VQA algorithm is proposed to predict the local factors from the source video. In the IRCCyN/IVC video database of content influence and the LIVE mobile video database, the performance of VQA algorithms is improved significantly by local alignment. The proposed mapping strategy with prediction of local factors outperforms one no-reference VQA metric and is comparable to one full-reference VQA metric. Thus predicting the local factors in local alignment based on video content will be a promising new approach for VQA.</dcterms:abstract>
    <dc:creator>Zhu, Kongfeng</dc:creator>
    <dc:creator>Barkowsky, Marcus</dc:creator>
    <dc:creator>Shen, Minmin</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Barkowsky, Marcus</dc:contributor>
    <dcterms:title>Optimizing feature pooling and prediction models of VQA algorithms</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:09:57Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2014</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30287"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T10:09:57Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:contributor>Zhu, Kongfeng</dc:contributor>
    <dc:contributor>Le Callet, Patrick</dc:contributor>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen