On Infinite Linear Programming and the Moment Approach to Deterministic Infinite Horizon Discounted Optimal Control Problems

Lade...
Vorschaubild
Dateien
Kamoutsi_2-uemss4neqlzm5.pdf
Kamoutsi_2-uemss4neqlzm5.pdfGröße: 346.19 KBDownloads: 2
Datum
2017
Autor:innen
Kamoutsi, Angeliki
Mohajerin Esfahani, Peyman
Lygeros, John
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Control Systems Letters. IEEE. 2017, 1(1), S. 134-139. eISSN 2475-1456. Verfügbar unter: doi: 10.1109/LCSYS.2017.2710234
Zusammenfassung

We revisit the linear programming approach to deterministic, continuous time, infinite horizon discounted optimal control problems. In the first part, we relax the original problem to an infinite-dimensional linear program over a measure space and prove equivalence of the two formulations under mild assumptions, significantly weaker than those found in the literature until now. The proof is based on duality theory and mollification techniques for constructing approximate smooth subsolutions to the associated Hamilton-Jacobi-Bellman equation. In the second part, we assume polynomial data and use Lasserre's hierarchy of primal-dual moment-sum-of-squares semidefinite relaxations to approximate the value function and design an approximate optimal feedback controller. We conclude with an illustrative example.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Optimal control, discounted occupation measures, moments, sum-of-squares, infinite linear programming
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KAMOUTSI, Angeliki, Tobias SUTTER, Peyman MOHAJERIN ESFAHANI, John LYGEROS, 2017. On Infinite Linear Programming and the Moment Approach to Deterministic Infinite Horizon Discounted Optimal Control Problems. In: IEEE Control Systems Letters. IEEE. 2017, 1(1), S. 134-139. eISSN 2475-1456. Verfügbar unter: doi: 10.1109/LCSYS.2017.2710234
BibTex
@article{Kamoutsi2017Infin-55612,
  year={2017},
  doi={10.1109/LCSYS.2017.2710234},
  title={On Infinite Linear Programming and the Moment Approach to Deterministic Infinite Horizon Discounted Optimal Control Problems},
  number={1},
  volume={1},
  journal={IEEE Control Systems Letters},
  pages={134--139},
  author={Kamoutsi, Angeliki and Sutter, Tobias and Mohajerin Esfahani, Peyman and Lygeros, John}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55612">
    <dc:contributor>Kamoutsi, Angeliki</dc:contributor>
    <dcterms:abstract xml:lang="eng">We revisit the linear programming approach to deterministic, continuous time, infinite horizon discounted optimal control problems. In the first part, we relax the original problem to an infinite-dimensional linear program over a measure space and prove equivalence of the two formulations under mild assumptions, significantly weaker than those found in the literature until now. The proof is based on duality theory and mollification techniques for constructing approximate smooth subsolutions to the associated Hamilton-Jacobi-Bellman equation. In the second part, we assume polynomial data and use Lasserre's hierarchy of primal-dual moment-sum-of-squares semidefinite relaxations to approximate the value function and design an approximate optimal feedback controller. We conclude with an illustrative example.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55612/1/Kamoutsi_2-uemss4neqlzm5.pdf"/>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dcterms:title>On Infinite Linear Programming and the Moment Approach to Deterministic Infinite Horizon Discounted Optimal Control Problems</dcterms:title>
    <dc:contributor>Lygeros, John</dc:contributor>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Mohajerin Esfahani, Peyman</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
    <dc:creator>Lygeros, John</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55612"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55612/1/Kamoutsi_2-uemss4neqlzm5.pdf"/>
    <dc:creator>Kamoutsi, Angeliki</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T13:46:40Z</dc:date>
    <dc:contributor>Mohajerin Esfahani, Peyman</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-22T13:46:40Z</dcterms:available>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen