Guiding the Exploration of Scatter Plot Data Using Motif-Based Interest Measures

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
ENGELKE, Ulrich, ed. and others. 2015 Big Data Visual Analytics (BDVA). IEEE, 2015, pp. 57-64. ISBN 978-1-4673-7343-2. Available under: doi: 10.1109/BDVA.2015.7314294
Zusammenfassung

Finding interesting patterns in large scatter plot spaces is a challenging problem and becomes even more difficult with increasing number of dimensions. Previous approaches for exploring large scatter plot spaces like e.g., the well-known Scagnostics approach, mainly focus on ranking scatter plots based on their global properties. However, often local patterns contribute significantly to the interestingness of a scatter plot. We are proposing a novel approach for the automatic determination of interesting views in scatter plot spaces based on analysis of local scatter plot segments. Specifically, we automatically classify similar local scatter plot segments, which we call scatter plot motifs. Inspired by the well-known tf-idf approach from information retrieval, we compute local and global quality measures based on certain frequency properties of the local motifs. We show how we can use these to filter, rank and compare scatter plots and their incorporated motifs. We demonstrate the usefulness of our approach with synthetic and real-world data sets and showcase our corresponding data exploration tool that visualizes the distribution of local scatter plot motifs in relation to a large overall scatter plot space.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2015 Big Data Visual Analytics (BDVA), 22. Sept. 2015 - 25. Sept. 2015, Hobart, Australia
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SHAO, Lin, Timo SCHLEICHER, Michael BEHRISCH, Tobias SCHRECK, Ivan SIPIRAN, Daniel A. KEIM, 2015. Guiding the Exploration of Scatter Plot Data Using Motif-Based Interest Measures. 2015 Big Data Visual Analytics (BDVA). Hobart, Australia, 22. Sept. 2015 - 25. Sept. 2015. In: ENGELKE, Ulrich, ed. and others. 2015 Big Data Visual Analytics (BDVA). IEEE, 2015, pp. 57-64. ISBN 978-1-4673-7343-2. Available under: doi: 10.1109/BDVA.2015.7314294
BibTex
@inproceedings{Shao2015Guidi-33192,
  year={2015},
  doi={10.1109/BDVA.2015.7314294},
  title={Guiding the Exploration of Scatter Plot Data Using Motif-Based Interest Measures},
  isbn={978-1-4673-7343-2},
  publisher={IEEE},
  booktitle={2015 Big Data Visual Analytics (BDVA)},
  pages={57--64},
  editor={Engelke, Ulrich},
  author={Shao, Lin and Schleicher, Timo and Behrisch, Michael and Schreck, Tobias and Sipiran, Ivan and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33192">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33192"/>
    <dcterms:issued>2015</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schleicher, Timo</dc:creator>
    <dc:creator>Shao, Lin</dc:creator>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:contributor>Sipiran, Ivan</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Finding interesting patterns in large scatter plot spaces is a challenging problem and becomes even more difficult with increasing number of dimensions. Previous approaches for exploring large scatter plot spaces like e.g., the well-known Scagnostics approach, mainly focus on ranking scatter plots based on their global properties. However, often local patterns contribute significantly to the interestingness of a scatter plot. We are proposing a novel approach for the automatic determination of interesting views in scatter plot spaces based on analysis of local scatter plot segments. Specifically, we automatically classify similar local scatter plot segments, which we call scatter plot motifs. Inspired by the well-known tf-idf approach from information retrieval, we compute local and global quality measures based on certain frequency properties of the local motifs. We show how we can use these to filter, rank and compare scatter plots and their incorporated motifs. We demonstrate the usefulness of our approach with synthetic and real-world data sets and showcase our corresponding data exploration tool that visualizes the distribution of local scatter plot motifs in relation to a large overall scatter plot space.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-02T11:07:27Z</dcterms:available>
    <dc:creator>Sipiran, Ivan</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Guiding the Exploration of Scatter Plot Data Using Motif-Based Interest Measures</dcterms:title>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:contributor>Schleicher, Timo</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-02T11:07:27Z</dc:date>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen