Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm

Lade...
Vorschaubild
Dateien
Bayer_264785.pdf
Bayer_264785.pdfGröße: 1.28 MBDownloads: 456
Datum
2013
Autor:innen
Groth, Philip
Schneckener, Sebastian
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
PLoS ONE. 2013, 8(7), pp. e70294. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0070294
Zusammenfassung

Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BAYER, Immanuel, Philip GROTH, Sebastian SCHNECKENER, 2013. Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm. In: PLoS ONE. 2013, 8(7), pp. e70294. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0070294
BibTex
@article{Bayer2013Predi-26478,
  year={2013},
  doi={10.1371/journal.pone.0070294},
  title={Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm},
  number={7},
  volume={8},
  journal={PLoS ONE},
  author={Bayer, Immanuel and Groth, Philip and Schneckener, Sebastian},
  note={Article Number: e70294}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26478">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Bayer, Immanuel</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Schneckener, Sebastian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schneckener, Sebastian</dc:creator>
    <dc:contributor>Groth, Philip</dc:contributor>
    <dc:creator>Groth, Philip</dc:creator>
    <dc:contributor>Bayer, Immanuel</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26478"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2013</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.</dcterms:abstract>
    <dcterms:bibliographicCitation>PLoS ONE ; 8 (2013), 7. - e70294</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T12:01:43Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:title>Prediction errors in learning drug response from gene expression data : influence of labeling, sample size, and machine learning algorithm</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26478/2/Bayer_264785.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-19T12:01:43Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/26478/2/Bayer_264785.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen