Electric dipole spin resonance of two-dimensional semiconductor spin qubits
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for semiconductor devices. One such application, whereby the added low dimensional crystal physics (i.e. optical spin selection rules) may prove TMDs a competitive candidate, are quantum dots as qubits. The band structure of TMD monolayers offers a number of different degrees of freedom and combinations thereof as potential qubit bases, primarily electron spin, valley isospin and the combination of the two due to the strong spin-orbit coupling known as a Kramers qubit. Pure spin qubits in monolayer MoX2 (where X= S or Se) can be achieved by energetically isolating a single valley and tuning to a spin degenerate regime within that valley by a combination of a sufficiently small quantum dot radius and large perpendicular magnetic field. Within such a TMD spin qubit, we theoretically analyse single qubit rotations induced by electric dipole spin resonance. We employ a rotating wave approximation (RWA) within a second order time dependent Schrieffer-Wolf effective Hamiltonian to derive analytic expressions for the Rabi frequency of single qubit oscillations, and optimise the mechanism or the parameters to show oscillations up to \unit[250]MHz. This is significantly faster than similar predictions found for TMD qubits in the Kramers pair spin-valley or valley-only basis as well as experimental results for conventional semiconductor devices.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BROOKS, Matthew, Guido BURKARD, 2020. Electric dipole spin resonance of two-dimensional semiconductor spin qubits. In: Physical Review B. American Physical Society. 2020, 101(3), 035204. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.101.035204BibTex
@article{Brooks2020Elect-48437, year={2020}, doi={10.1103/PhysRevB.101.035204}, title={Electric dipole spin resonance of two-dimensional semiconductor spin qubits}, number={3}, volume={101}, issn={2469-9950}, journal={Physical Review B}, author={Brooks, Matthew and Burkard, Guido}, note={Article Number: 035204} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48437"> <dcterms:issued>2020</dcterms:issued> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T08:06:59Z</dcterms:available> <dc:creator>Brooks, Matthew</dc:creator> <dc:contributor>Brooks, Matthew</dc:contributor> <dcterms:title>Electric dipole spin resonance of two-dimensional semiconductor spin qubits</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Burkard, Guido</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48437"/> <dc:creator>Burkard, Guido</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for semiconductor devices. One such application, whereby the added low dimensional crystal physics (i.e. optical spin selection rules) may prove TMDs a competitive candidate, are quantum dots as qubits. The band structure of TMD monolayers offers a number of different degrees of freedom and combinations thereof as potential qubit bases, primarily electron spin, valley isospin and the combination of the two due to the strong spin-orbit coupling known as a Kramers qubit. Pure spin qubits in monolayer MoX<sub>2</sub> (where X= S or Se) can be achieved by energetically isolating a single valley and tuning to a spin degenerate regime within that valley by a combination of a sufficiently small quantum dot radius and large perpendicular magnetic field. Within such a TMD spin qubit, we theoretically analyse single qubit rotations induced by electric dipole spin resonance. We employ a rotating wave approximation (RWA) within a second order time dependent Schrieffer-Wolf effective Hamiltonian to derive analytic expressions for the Rabi frequency of single qubit oscillations, and optimise the mechanism or the parameters to show oscillations up to \unit[250]MHz. This is significantly faster than similar predictions found for TMD qubits in the Kramers pair spin-valley or valley-only basis as well as experimental results for conventional semiconductor devices.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T08:06:59Z</dc:date> </rdf:Description> </rdf:RDF>