Electric dipole spin resonance of two-dimensional semiconductor spin qubits

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 676108
Projekt
Spin-Nano
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review B. American Physical Society. 2020, 101(3), 035204. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.101.035204
Zusammenfassung

Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for semiconductor devices. One such application, whereby the added low dimensional crystal physics (i.e. optical spin selection rules) may prove TMDs a competitive candidate, are quantum dots as qubits. The band structure of TMD monolayers offers a number of different degrees of freedom and combinations thereof as potential qubit bases, primarily electron spin, valley isospin and the combination of the two due to the strong spin-orbit coupling known as a Kramers qubit. Pure spin qubits in monolayer MoX2 (where X= S or Se) can be achieved by energetically isolating a single valley and tuning to a spin degenerate regime within that valley by a combination of a sufficiently small quantum dot radius and large perpendicular magnetic field. Within such a TMD spin qubit, we theoretically analyse single qubit rotations induced by electric dipole spin resonance. We employ a rotating wave approximation (RWA) within a second order time dependent Schrieffer-Wolf effective Hamiltonian to derive analytic expressions for the Rabi frequency of single qubit oscillations, and optimise the mechanism or the parameters to show oscillations up to \unit[250]MHz. This is significantly faster than similar predictions found for TMD qubits in the Kramers pair spin-valley or valley-only basis as well as experimental results for conventional semiconductor devices.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BROOKS, Matthew, Guido BURKARD, 2020. Electric dipole spin resonance of two-dimensional semiconductor spin qubits. In: Physical Review B. American Physical Society. 2020, 101(3), 035204. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.101.035204
BibTex
@article{Brooks2020Elect-48437,
  year={2020},
  doi={10.1103/PhysRevB.101.035204},
  title={Electric dipole spin resonance of two-dimensional semiconductor spin qubits},
  number={3},
  volume={101},
  issn={2469-9950},
  journal={Physical Review B},
  author={Brooks, Matthew and Burkard, Guido},
  note={Article Number: 035204}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48437">
    <dcterms:issued>2020</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T08:06:59Z</dcterms:available>
    <dc:creator>Brooks, Matthew</dc:creator>
    <dc:contributor>Brooks, Matthew</dc:contributor>
    <dcterms:title>Electric dipole spin resonance of two-dimensional semiconductor spin qubits</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Burkard, Guido</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48437"/>
    <dc:creator>Burkard, Guido</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for semiconductor devices. One such application, whereby the added low dimensional crystal physics (i.e. optical spin selection rules) may prove TMDs a competitive candidate, are quantum dots as qubits. The band structure of TMD monolayers offers a number of different degrees of freedom and combinations thereof as potential qubit bases, primarily electron spin, valley isospin and the combination of the two due to the strong spin-orbit coupling known as a Kramers qubit. Pure spin qubits in monolayer MoX&lt;sub&gt;2&lt;/sub&gt; (where X= S or Se) can be achieved by energetically isolating a single valley and tuning to a spin degenerate regime within that valley by a combination of a sufficiently small quantum dot radius and large perpendicular magnetic field. Within such a TMD spin qubit, we theoretically analyse single qubit rotations induced by electric dipole spin resonance. We employ a rotating wave approximation (RWA) within a second order time dependent Schrieffer-Wolf effective Hamiltonian to derive analytic expressions for the Rabi frequency of single qubit oscillations, and optimise the mechanism or the parameters to show oscillations up to \unit[250]MHz. This is significantly faster than similar predictions found for TMD qubits in the Kramers pair spin-valley or valley-only basis as well as experimental results for conventional semiconductor devices.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T08:06:59Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen