Publikation:

Electric dipole spin resonance of two-dimensional semiconductor spin qubits

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 676108

Projekt

Spin-Nano
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review B. American Physical Society. 2020, 101(3), 035204. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.101.035204

Zusammenfassung

Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for semiconductor devices. One such application, whereby the added low dimensional crystal physics (i.e. optical spin selection rules) may prove TMDs a competitive candidate, are quantum dots as qubits. The band structure of TMD monolayers offers a number of different degrees of freedom and combinations thereof as potential qubit bases, primarily electron spin, valley isospin and the combination of the two due to the strong spin-orbit coupling known as a Kramers qubit. Pure spin qubits in monolayer MoX2 (where X= S or Se) can be achieved by energetically isolating a single valley and tuning to a spin degenerate regime within that valley by a combination of a sufficiently small quantum dot radius and large perpendicular magnetic field. Within such a TMD spin qubit, we theoretically analyse single qubit rotations induced by electric dipole spin resonance. We employ a rotating wave approximation (RWA) within a second order time dependent Schrieffer-Wolf effective Hamiltonian to derive analytic expressions for the Rabi frequency of single qubit oscillations, and optimise the mechanism or the parameters to show oscillations up to \unit[250]MHz. This is significantly faster than similar predictions found for TMD qubits in the Kramers pair spin-valley or valley-only basis as well as experimental results for conventional semiconductor devices.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BROOKS, Matthew, Guido BURKARD, 2020. Electric dipole spin resonance of two-dimensional semiconductor spin qubits. In: Physical Review B. American Physical Society. 2020, 101(3), 035204. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.101.035204
BibTex
@article{Brooks2020Elect-48437,
  year={2020},
  doi={10.1103/PhysRevB.101.035204},
  title={Electric dipole spin resonance of two-dimensional semiconductor spin qubits},
  number={3},
  volume={101},
  issn={2469-9950},
  journal={Physical Review B},
  author={Brooks, Matthew and Burkard, Guido},
  note={Article Number: 035204}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48437">
    <dcterms:issued>2020</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T08:06:59Z</dcterms:available>
    <dc:creator>Brooks, Matthew</dc:creator>
    <dc:contributor>Brooks, Matthew</dc:contributor>
    <dcterms:title>Electric dipole spin resonance of two-dimensional semiconductor spin qubits</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Burkard, Guido</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48437"/>
    <dc:creator>Burkard, Guido</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">Monolayer transition metal dichalcogenides (TMDs) offer a novel two-dimensional platform for semiconductor devices. One such application, whereby the added low dimensional crystal physics (i.e. optical spin selection rules) may prove TMDs a competitive candidate, are quantum dots as qubits. The band structure of TMD monolayers offers a number of different degrees of freedom and combinations thereof as potential qubit bases, primarily electron spin, valley isospin and the combination of the two due to the strong spin-orbit coupling known as a Kramers qubit. Pure spin qubits in monolayer MoX&lt;sub&gt;2&lt;/sub&gt; (where X= S or Se) can be achieved by energetically isolating a single valley and tuning to a spin degenerate regime within that valley by a combination of a sufficiently small quantum dot radius and large perpendicular magnetic field. Within such a TMD spin qubit, we theoretically analyse single qubit rotations induced by electric dipole spin resonance. We employ a rotating wave approximation (RWA) within a second order time dependent Schrieffer-Wolf effective Hamiltonian to derive analytic expressions for the Rabi frequency of single qubit oscillations, and optimise the mechanism or the parameters to show oscillations up to \unit[250]MHz. This is significantly faster than similar predictions found for TMD qubits in the Kramers pair spin-valley or valley-only basis as well as experimental results for conventional semiconductor devices.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-31T08:06:59Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen