Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions

Lade...
Vorschaubild
Dateien
Kuentzler_2-uuwxfv0cbx425.pdf
Kuentzler_2-uuwxfv0cbx425.pdfGröße: 1.61 MBDownloads: 174
Datum
2021
Autor:innen
Höfling, T. Tim A.
Alpers, Georg W.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Frontiers in Psychology. Frontiers Research Foundation. 2021, 12, 627561. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2021.627561
Zusammenfassung

Emotional facial expressions can inform researchers about an individual's emotional state. Recent technological advances open up new avenues to automatic Facial Expression Recognition (FER). Based on machine learning, such technology can tremendously increase the amount of processed data. FER is now easily accessible and has been validated for the classification of standardized prototypical facial expressions. However, applicability to more naturalistic facial expressions still remains uncertain. Hence, we test and compare performance of three different FER systems (Azure Face API, Microsoft; Face++, Megvii Technology; FaceReader, Noldus Information Technology) with human emotion recognition (A) for standardized posed facial expressions (from prototypical inventories) and (B) for non-standardized acted facial expressions (extracted from emotional movie scenes). For the standardized images, all three systems classify basic emotions accurately (FaceReader is most accurate) and they are mostly on par with human raters. For the non-standardized stimuli, performance drops remarkably for all three systems, but Azure still performs similarly to humans. In addition, all systems and humans alike tend to misclassify some of the non-standardized emotional facial expressions as neutral. In sum, emotion recognition by automated facial expression recognition can be an attractive alternative to human emotion recognition for standardized and non-standardized emotional facial expressions. However, we also found limitations in accuracy for specific facial expressions; clearly there is need for thorough empirical evaluation to guide future developments in computer vision of emotional facial expressions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
recognition of emotional facial expressions, software evaluation, human emotion recognition, standardized inventories, naturalistic expressions, automatic facial coding, facial expression recognition, specific emotions
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KÜNTZLER, Theresa, T. Tim A. HÖFLING, Georg W. ALPERS, 2021. Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions. In: Frontiers in Psychology. Frontiers Research Foundation. 2021, 12, 627561. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2021.627561
BibTex
@article{Kuntzler2021Autom-53928,
  year={2021},
  doi={10.3389/fpsyg.2021.627561},
  title={Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions},
  volume={12},
  journal={Frontiers in Psychology},
  author={Küntzler, Theresa and Höfling, T. Tim A. and Alpers, Georg W.},
  note={Article Number: 627561}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53928">
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:31:46Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:31:46Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Küntzler, Theresa</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:title>Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions</dcterms:title>
    <dc:creator>Alpers, Georg W.</dc:creator>
    <dc:contributor>Alpers, Georg W.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53928"/>
    <dcterms:abstract xml:lang="eng">Emotional facial expressions can inform researchers about an individual's emotional state. Recent technological advances open up new avenues to automatic Facial Expression Recognition (FER). Based on machine learning, such technology can tremendously increase the amount of processed data. FER is now easily accessible and has been validated for the classification of standardized prototypical facial expressions. However, applicability to more naturalistic facial expressions still remains uncertain. Hence, we test and compare performance of three different FER systems (Azure Face API, Microsoft; Face++, Megvii Technology; FaceReader, Noldus Information Technology) with human emotion recognition (A) for standardized posed facial expressions (from prototypical inventories) and (B) for non-standardized acted facial expressions (extracted from emotional movie scenes). For the standardized images, all three systems classify basic emotions accurately (FaceReader is most accurate) and they are mostly on par with human raters. For the non-standardized stimuli, performance drops remarkably for all three systems, but Azure still performs similarly to humans. In addition, all systems and humans alike tend to misclassify some of the non-standardized emotional facial expressions as neutral. In sum, emotion recognition by automated facial expression recognition can be an attractive alternative to human emotion recognition for standardized and non-standardized emotional facial expressions. However, we also found limitations in accuracy for specific facial expressions; clearly there is need for thorough empirical evaluation to guide future developments in computer vision of emotional facial expressions.</dcterms:abstract>
    <dc:contributor>Höfling, T. Tim A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53928/1/Kuentzler_2-uuwxfv0cbx425.pdf"/>
    <dc:creator>Küntzler, Theresa</dc:creator>
    <dc:creator>Höfling, T. Tim A.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53928/1/Kuentzler_2-uuwxfv0cbx425.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen