Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Emotional facial expressions can inform researchers about an individual's emotional state. Recent technological advances open up new avenues to automatic Facial Expression Recognition (FER). Based on machine learning, such technology can tremendously increase the amount of processed data. FER is now easily accessible and has been validated for the classification of standardized prototypical facial expressions. However, applicability to more naturalistic facial expressions still remains uncertain. Hence, we test and compare performance of three different FER systems (Azure Face API, Microsoft; Face++, Megvii Technology; FaceReader, Noldus Information Technology) with human emotion recognition (A) for standardized posed facial expressions (from prototypical inventories) and (B) for non-standardized acted facial expressions (extracted from emotional movie scenes). For the standardized images, all three systems classify basic emotions accurately (FaceReader is most accurate) and they are mostly on par with human raters. For the non-standardized stimuli, performance drops remarkably for all three systems, but Azure still performs similarly to humans. In addition, all systems and humans alike tend to misclassify some of the non-standardized emotional facial expressions as neutral. In sum, emotion recognition by automated facial expression recognition can be an attractive alternative to human emotion recognition for standardized and non-standardized emotional facial expressions. However, we also found limitations in accuracy for specific facial expressions; clearly there is need for thorough empirical evaluation to guide future developments in computer vision of emotional facial expressions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KÜNTZLER, Theresa, T. Tim A. HÖFLING, Georg W. ALPERS, 2021. Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions. In: Frontiers in Psychology. Frontiers Research Foundation. 2021, 12, 627561. eISSN 1664-1078. Available under: doi: 10.3389/fpsyg.2021.627561BibTex
@article{Kuntzler2021Autom-53928, year={2021}, doi={10.3389/fpsyg.2021.627561}, title={Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions}, volume={12}, journal={Frontiers in Psychology}, author={Küntzler, Theresa and Höfling, T. Tim A. and Alpers, Georg W.}, note={Article Number: 627561} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53928"> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:31:46Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T11:31:46Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Küntzler, Theresa</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2021</dcterms:issued> <dcterms:title>Automatic Facial Expression Recognition in Standardized and Non-standardized Emotional Expressions</dcterms:title> <dc:creator>Alpers, Georg W.</dc:creator> <dc:contributor>Alpers, Georg W.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53928"/> <dcterms:abstract xml:lang="eng">Emotional facial expressions can inform researchers about an individual's emotional state. Recent technological advances open up new avenues to automatic Facial Expression Recognition (FER). Based on machine learning, such technology can tremendously increase the amount of processed data. FER is now easily accessible and has been validated for the classification of standardized prototypical facial expressions. However, applicability to more naturalistic facial expressions still remains uncertain. Hence, we test and compare performance of three different FER systems (Azure Face API, Microsoft; Face++, Megvii Technology; FaceReader, Noldus Information Technology) with human emotion recognition (A) for standardized posed facial expressions (from prototypical inventories) and (B) for non-standardized acted facial expressions (extracted from emotional movie scenes). For the standardized images, all three systems classify basic emotions accurately (FaceReader is most accurate) and they are mostly on par with human raters. For the non-standardized stimuli, performance drops remarkably for all three systems, but Azure still performs similarly to humans. In addition, all systems and humans alike tend to misclassify some of the non-standardized emotional facial expressions as neutral. In sum, emotion recognition by automated facial expression recognition can be an attractive alternative to human emotion recognition for standardized and non-standardized emotional facial expressions. However, we also found limitations in accuracy for specific facial expressions; clearly there is need for thorough empirical evaluation to guide future developments in computer vision of emotional facial expressions.</dcterms:abstract> <dc:contributor>Höfling, T. Tim A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53928/1/Kuentzler_2-uuwxfv0cbx425.pdf"/> <dc:creator>Küntzler, Theresa</dc:creator> <dc:creator>Höfling, T. Tim A.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53928/1/Kuentzler_2-uuwxfv0cbx425.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>