Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation

Lade...
Vorschaubild
Dateien
Scharpf_2-uz2ygw33i3hq6.pdf
Scharpf_2-uz2ygw33i3hq6.pdfGröße: 868.52 KBDownloads: 398
Datum
2021
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
LESKOVEC, Jure, ed., Marko GROBELNIK, ed., Marc NAJORK, ed. and others. WWW '21 : Companion Proceedings of the Web Conference 2021. New York, NY: ACM, 2021, pp. 602-609. ISBN 978-1-4503-8313-4. Available under: doi: 10.1145/3442442.3452348
Zusammenfassung

Mathematical information retrieval (MathIR) applications such as semantic formula search and question answering systems rely on knowledge-bases that link mathematical expressions to their natural language names. For database population, mathematical formulae need to be annotated and linked to semantic concepts, which is very time-consuming. In this paper, we present our approach to structure and speed up this process by using an application-driven strategy and AI-aided system. We evaluate the quality and time-savings of AI-generated formula and identifier annotation recommendations on a test selection of Wikipedia articles from the physics domain. Moreover, we evaluate the community acceptance of Wikipedia formula entity links and Wikidata item creation and population to ground the formula semantics. Our evaluation shows that the AI guidance was able to significantly speed up the annotation process by a factor of 1.4 for formulae and 2.4 for identifiers. Our contributions were accepted in 88% of the edited Wikipedia articles and 67% of the Wikidata items. The >>AnnoMathTeX<< annotation recommender system is hosted by Wikimedia at annomathtex.wmflabs.org. In the future, our data refinement pipeline will be integrated seamlessly into the Wikimedia user interfaces.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Entity Linking, Wikipedia, Wikidata, Recommender Systems
Konferenz
WWW '21 : The ACM Web Conference 2021, 19. Apr. 2021 - 23. Apr. 2021, Ljubljana, Slovenia
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SCHARPF, Philipp, Moritz SCHUBOTZ, Bela GIPP, 2021. Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation. WWW '21 : The ACM Web Conference 2021. Ljubljana, Slovenia, 19. Apr. 2021 - 23. Apr. 2021. In: LESKOVEC, Jure, ed., Marko GROBELNIK, ed., Marc NAJORK, ed. and others. WWW '21 : Companion Proceedings of the Web Conference 2021. New York, NY: ACM, 2021, pp. 602-609. ISBN 978-1-4503-8313-4. Available under: doi: 10.1145/3442442.3452348
BibTex
@inproceedings{Scharpf2021Linki-57042,
  year={2021},
  doi={10.1145/3442442.3452348},
  title={Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation},
  isbn={978-1-4503-8313-4},
  publisher={ACM},
  address={New York, NY},
  booktitle={WWW '21 : Companion Proceedings of the Web Conference 2021},
  pages={602--609},
  editor={Leskovec, Jure and Grobelnik, Marko and Najork, Marc},
  author={Scharpf, Philipp and Schubotz, Moritz and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57042">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T10:33:08Z</dcterms:available>
    <dc:creator>Scharpf, Philipp</dc:creator>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57042/1/Scharpf_2-uz2ygw33i3hq6.pdf"/>
    <dc:contributor>Scharpf, Philipp</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57042"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T10:33:08Z</dc:date>
    <dcterms:abstract xml:lang="eng">Mathematical information retrieval (MathIR) applications such as semantic formula search and question answering systems rely on knowledge-bases that link mathematical expressions to their natural language names. For database population, mathematical formulae need to be annotated and linked to semantic concepts, which is very time-consuming. In this paper, we present our approach to structure and speed up this process by using an application-driven strategy and AI-aided system. We evaluate the quality and time-savings of AI-generated formula and identifier annotation recommendations on a test selection of Wikipedia articles from the physics domain. Moreover, we evaluate the community acceptance of Wikipedia formula entity links and Wikidata item creation and population to ground the formula semantics. Our evaluation shows that the AI guidance was able to significantly speed up the annotation process by a factor of 1.4 for formulae and 2.4 for identifiers. Our contributions were accepted in 88% of the edited Wikipedia articles and 67% of the Wikidata items. The &gt;&gt;AnnoMathTeX&lt;&lt; annotation recommender system is hosted by Wikimedia at annomathtex.wmflabs.org. In the future, our data refinement pipeline will be integrated seamlessly into the Wikimedia user interfaces.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57042/1/Scharpf_2-uz2ygw33i3hq6.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen