Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Mathematical information retrieval (MathIR) applications such as semantic formula search and question answering systems rely on knowledge-bases that link mathematical expressions to their natural language names. For database population, mathematical formulae need to be annotated and linked to semantic concepts, which is very time-consuming. In this paper, we present our approach to structure and speed up this process by using an application-driven strategy and AI-aided system. We evaluate the quality and time-savings of AI-generated formula and identifier annotation recommendations on a test selection of Wikipedia articles from the physics domain. Moreover, we evaluate the community acceptance of Wikipedia formula entity links and Wikidata item creation and population to ground the formula semantics. Our evaluation shows that the AI guidance was able to significantly speed up the annotation process by a factor of 1.4 for formulae and 2.4 for identifiers. Our contributions were accepted in 88% of the edited Wikipedia articles and 67% of the Wikidata items. The >>AnnoMathTeX<< annotation recommender system is hosted by Wikimedia at annomathtex.wmflabs.org. In the future, our data refinement pipeline will be integrated seamlessly into the Wikimedia user interfaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHARPF, Philipp, Moritz SCHUBOTZ, Bela GIPP, 2021. Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation. WWW '21 : The ACM Web Conference 2021. Ljubljana, Slovenia, 19. Apr. 2021 - 23. Apr. 2021. In: LESKOVEC, Jure, ed., Marko GROBELNIK, ed., Marc NAJORK, ed. and others. WWW '21 : Companion Proceedings of the Web Conference 2021. New York, NY: ACM, 2021, pp. 602-609. ISBN 978-1-4503-8313-4. Available under: doi: 10.1145/3442442.3452348BibTex
@inproceedings{Scharpf2021Linki-57042, year={2021}, doi={10.1145/3442442.3452348}, title={Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation}, isbn={978-1-4503-8313-4}, publisher={ACM}, address={New York, NY}, booktitle={WWW '21 : Companion Proceedings of the Web Conference 2021}, pages={602--609}, editor={Leskovec, Jure and Grobelnik, Marko and Najork, Marc}, author={Scharpf, Philipp and Schubotz, Moritz and Gipp, Bela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57042"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T10:33:08Z</dcterms:available> <dc:creator>Scharpf, Philipp</dc:creator> <dc:contributor>Schubotz, Moritz</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57042/1/Scharpf_2-uz2ygw33i3hq6.pdf"/> <dc:contributor>Scharpf, Philipp</dc:contributor> <dc:contributor>Gipp, Bela</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57042"/> <dc:creator>Schubotz, Moritz</dc:creator> <dcterms:issued>2021</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T10:33:08Z</dc:date> <dcterms:abstract xml:lang="eng">Mathematical information retrieval (MathIR) applications such as semantic formula search and question answering systems rely on knowledge-bases that link mathematical expressions to their natural language names. For database population, mathematical formulae need to be annotated and linked to semantic concepts, which is very time-consuming. In this paper, we present our approach to structure and speed up this process by using an application-driven strategy and AI-aided system. We evaluate the quality and time-savings of AI-generated formula and identifier annotation recommendations on a test selection of Wikipedia articles from the physics domain. Moreover, we evaluate the community acceptance of Wikipedia formula entity links and Wikidata item creation and population to ground the formula semantics. Our evaluation shows that the AI guidance was able to significantly speed up the annotation process by a factor of 1.4 for formulae and 2.4 for identifiers. Our contributions were accepted in 88% of the edited Wikipedia articles and 67% of the Wikidata items. The >>AnnoMathTeX<< annotation recommender system is hosted by Wikimedia at annomathtex.wmflabs.org. In the future, our data refinement pipeline will be integrated seamlessly into the Wikimedia user interfaces.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Gipp, Bela</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57042/1/Scharpf_2-uz2ygw33i3hq6.pdf"/> </rdf:Description> </rdf:RDF>