Publikation:

Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation

Lade...
Vorschaubild

Dateien

Scharpf_2-uz2ygw33i3hq6.pdf
Scharpf_2-uz2ygw33i3hq6.pdfGröße: 868.52 KBDownloads: 419

Datum

2021

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LESKOVEC, Jure, ed., Marko GROBELNIK, ed., Marc NAJORK, ed. and others. WWW '21 : Companion Proceedings of the Web Conference 2021. New York, NY: ACM, 2021, pp. 602-609. ISBN 978-1-4503-8313-4. Available under: doi: 10.1145/3442442.3452348

Zusammenfassung

Mathematical information retrieval (MathIR) applications such as semantic formula search and question answering systems rely on knowledge-bases that link mathematical expressions to their natural language names. For database population, mathematical formulae need to be annotated and linked to semantic concepts, which is very time-consuming. In this paper, we present our approach to structure and speed up this process by using an application-driven strategy and AI-aided system. We evaluate the quality and time-savings of AI-generated formula and identifier annotation recommendations on a test selection of Wikipedia articles from the physics domain. Moreover, we evaluate the community acceptance of Wikipedia formula entity links and Wikidata item creation and population to ground the formula semantics. Our evaluation shows that the AI guidance was able to significantly speed up the annotation process by a factor of 1.4 for formulae and 2.4 for identifiers. Our contributions were accepted in 88% of the edited Wikipedia articles and 67% of the Wikidata items. The >>AnnoMathTeX<< annotation recommender system is hosted by Wikimedia at annomathtex.wmflabs.org. In the future, our data refinement pipeline will be integrated seamlessly into the Wikimedia user interfaces.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Entity Linking, Wikipedia, Wikidata, Recommender Systems

Konferenz

WWW '21 : The ACM Web Conference 2021, 19. Apr. 2021 - 23. Apr. 2021, Ljubljana, Slovenia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SCHARPF, Philipp, Moritz SCHUBOTZ, Bela GIPP, 2021. Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation. WWW '21 : The ACM Web Conference 2021. Ljubljana, Slovenia, 19. Apr. 2021 - 23. Apr. 2021. In: LESKOVEC, Jure, ed., Marko GROBELNIK, ed., Marc NAJORK, ed. and others. WWW '21 : Companion Proceedings of the Web Conference 2021. New York, NY: ACM, 2021, pp. 602-609. ISBN 978-1-4503-8313-4. Available under: doi: 10.1145/3442442.3452348
BibTex
@inproceedings{Scharpf2021Linki-57042,
  year={2021},
  doi={10.1145/3442442.3452348},
  title={Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation},
  isbn={978-1-4503-8313-4},
  publisher={ACM},
  address={New York, NY},
  booktitle={WWW '21 : Companion Proceedings of the Web Conference 2021},
  pages={602--609},
  editor={Leskovec, Jure and Grobelnik, Marko and Najork, Marc},
  author={Scharpf, Philipp and Schubotz, Moritz and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57042">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T10:33:08Z</dcterms:available>
    <dc:creator>Scharpf, Philipp</dc:creator>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57042/1/Scharpf_2-uz2ygw33i3hq6.pdf"/>
    <dc:contributor>Scharpf, Philipp</dc:contributor>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57042"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T10:33:08Z</dc:date>
    <dcterms:abstract xml:lang="eng">Mathematical information retrieval (MathIR) applications such as semantic formula search and question answering systems rely on knowledge-bases that link mathematical expressions to their natural language names. For database population, mathematical formulae need to be annotated and linked to semantic concepts, which is very time-consuming. In this paper, we present our approach to structure and speed up this process by using an application-driven strategy and AI-aided system. We evaluate the quality and time-savings of AI-generated formula and identifier annotation recommendations on a test selection of Wikipedia articles from the physics domain. Moreover, we evaluate the community acceptance of Wikipedia formula entity links and Wikidata item creation and population to ground the formula semantics. Our evaluation shows that the AI guidance was able to significantly speed up the annotation process by a factor of 1.4 for formulae and 2.4 for identifiers. Our contributions were accepted in 88% of the edited Wikipedia articles and 67% of the Wikidata items. The &gt;&gt;AnnoMathTeX&lt;&lt; annotation recommender system is hosted by Wikimedia at annomathtex.wmflabs.org. In the future, our data refinement pipeline will be integrated seamlessly into the Wikimedia user interfaces.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Fast Linking of Mathematical Wikidata Entities in Wikipedia Articles Using Annotation Recommendation</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Gipp, Bela</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57042/1/Scharpf_2-uz2ygw33i3hq6.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen