Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The macroscopic device performance of organic solar cells is governed by interface physics on a nanometer scale. A comb-like bilayer all-polymer morphology featuring a controlled enhancement in donor-acceptor interfacial area is employed as a model system to investigate the fundamental processes of exciton separation and polaron recombination in these devices. The different nanostructures are characterized locally by SEM/AFM, and the buried interdigitating interface of the final device architecture is statistically verified on a large area via advanced grazing incidence X-ray scattering techniques. The results show equally enhanced harvesting of photoexcitons in both donor and acceptor materials directly correlated to the total enhancement of interfacial area. Apart from this beneficial effect, the enhanced interface leads to significantly increased polaron recombination losses both around the open-circuit voltage and maximum power point, which is determined in complement with diode dark current characteristics, impedance spectroscopy, and transient photovoltage measurements. From these findings, it is inferred that a spatially optimized comb-like donor-acceptor nanonetwork alone is not the ideal morphology even though often postulated. Instead, the energetic landscape has to be considered. A perfect morphology for an excitonic solar cell must be spatially and energetically optimized with respect to the donor-acceptor interface.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PFADLER, Thomas, Mihael CORIC, Claudia M. PALUMBINY, Andreas C. JAKOWETZ, Karl-Philipp STRUNK, James A. DORMAN, Philipp EHRENREICH, Cheng WANG, Alexander HEXEMER, Rui-Qi PNG, Peter K. H. HO, Peter MÜLLER-BUSCHBAUM, Jonas WEICKERT, Lukas SCHMIDT-MENDE, 2014. Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells. In: ACS Nano. 2014, 8(12), pp. 12397-12409. ISSN 1936-0851. eISSN 1936-086X. Available under: doi: 10.1021/nn5064166BibTex
@article{Pfadler2014Influ-30362, year={2014}, doi={10.1021/nn5064166}, title={Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells}, number={12}, volume={8}, issn={1936-0851}, journal={ACS Nano}, pages={12397--12409}, author={Pfadler, Thomas and Coric, Mihael and Palumbiny, Claudia M. and Jakowetz, Andreas C. and Strunk, Karl-Philipp and Dorman, James A. and Ehrenreich, Philipp and Wang, Cheng and Hexemer, Alexander and Png, Rui-Qi and Ho, Peter K. H. and Müller-Buschbaum, Peter and Weickert, Jonas and Schmidt-Mende, Lukas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30362"> <dc:contributor>Schmidt-Mende, Lukas</dc:contributor> <dc:creator>Coric, Mihael</dc:creator> <dc:creator>Wang, Cheng</dc:creator> <dc:contributor>Weickert, Jonas</dc:contributor> <dc:creator>Pfadler, Thomas</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Ho, Peter K. H.</dc:contributor> <dc:contributor>Strunk, Karl-Philipp</dc:contributor> <dc:contributor>Png, Rui-Qi</dc:contributor> <dc:creator>Schmidt-Mende, Lukas</dc:creator> <dc:creator>Hexemer, Alexander</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30362"/> <dc:creator>Müller-Buschbaum, Peter</dc:creator> <dc:creator>Ho, Peter K. H.</dc:creator> <dc:creator>Jakowetz, Andreas C.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T07:15:55Z</dcterms:available> <dc:language>eng</dc:language> <dc:contributor>Coric, Mihael</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Müller-Buschbaum, Peter</dc:contributor> <dc:creator>Png, Rui-Qi</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T07:15:55Z</dc:date> <dc:contributor>Jakowetz, Andreas C.</dc:contributor> <dc:contributor>Pfadler, Thomas</dc:contributor> <dc:contributor>Palumbiny, Claudia M.</dc:contributor> <dcterms:abstract xml:lang="eng">The macroscopic device performance of organic solar cells is governed by interface physics on a nanometer scale. A comb-like bilayer all-polymer morphology featuring a controlled enhancement in donor-acceptor interfacial area is employed as a model system to investigate the fundamental processes of exciton separation and polaron recombination in these devices. The different nanostructures are characterized locally by SEM/AFM, and the buried interdigitating interface of the final device architecture is statistically verified on a large area via advanced grazing incidence X-ray scattering techniques. The results show equally enhanced harvesting of photoexcitons in both donor and acceptor materials directly correlated to the total enhancement of interfacial area. Apart from this beneficial effect, the enhanced interface leads to significantly increased polaron recombination losses both around the open-circuit voltage and maximum power point, which is determined in complement with diode dark current characteristics, impedance spectroscopy, and transient photovoltage measurements. From these findings, it is inferred that a spatially optimized comb-like donor-acceptor nanonetwork alone is not the ideal morphology even though often postulated. Instead, the energetic landscape has to be considered. A perfect morphology for an excitonic solar cell must be spatially and energetically optimized with respect to the donor-acceptor interface.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Strunk, Karl-Philipp</dc:creator> <dc:creator>Dorman, James A.</dc:creator> <dc:contributor>Hexemer, Alexander</dc:contributor> <dcterms:title>Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells</dcterms:title> <dc:contributor>Dorman, James A.</dc:contributor> <dc:creator>Ehrenreich, Philipp</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Weickert, Jonas</dc:creator> <dc:contributor>Ehrenreich, Philipp</dc:contributor> <dc:creator>Palumbiny, Claudia M.</dc:creator> <dc:contributor>Wang, Cheng</dc:contributor> </rdf:Description> </rdf:RDF>