Automated white matter fiber tract identification in patients with brain tumors

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
O'Donnell, Lauren J.
Suter, Yannick
Rigolo, Laura
Kahali, Pegah
Zhang, Fan
Norton, Isaiah
Olubiyi, Olutayo
Meola, Antonio
Essayed, Walid I.
et al.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
NeuroImage: Clinical. Elsevier. 2017, 13, pp. 138-153. eISSN 2213-1582. Available under: doi: 10.1016/j.nicl.2016.11.023
Zusammenfassung

We propose a method for the automated identification of key white matter fiber tracts for neurosurgical planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography, which include peritumoral edema, displacement, and mass effect caused by mass lesions. The proposed method has two parts. First, we learn a data-driven white matter parcellation or fiber cluster atlas using groupwise registration and spectral clustering of multi-fiber tractography from healthy controls. Key fiber tract clusters are identified in the atlas. Next, patient-specific fiber tracts are automatically identified using tractography-based registration to the atlas and spectral embedding of patient tractography. Results indicate good generalization of the data-driven atlas to patients: 80% of the 800 fiber clusters were identified in all 18 patients, and 94% of the 800 fiber clusters were found in 16 or more of the 18 patients. Automated subject-specific tract identification was evaluated by quantitative comparison to subject-specific motor and language functional MRI, focusing on the arcuate fasciculus (language) and corticospinal tracts (motor), which were identified in all patients.

Results indicate good colocalization: 89 of 95, or 94%, of patient-specific language and motor activations were intersected by the corresponding identified tract. All patient-specific activations were within 3mm of the corresponding language or motor tract. Overall, our results indicate the potential of an automated method for identifying fiber tracts of interest for neurosurgical planning, even in patients with mass lesions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Neurosurgery, Diffusion MRI, Tractography, Tumor, Fiber tract, White matter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690O'DONNELL, Lauren J., Yannick SUTER, Laura RIGOLO, Pegah KAHALI, Fan ZHANG, Isaiah NORTON, Angela ALBI, Olutayo OLUBIYI, Antonio MEOLA, Walid I. ESSAYED, 2017. Automated white matter fiber tract identification in patients with brain tumors. In: NeuroImage: Clinical. Elsevier. 2017, 13, pp. 138-153. eISSN 2213-1582. Available under: doi: 10.1016/j.nicl.2016.11.023
BibTex
@article{ODonnell2017Autom-50220,
  year={2017},
  doi={10.1016/j.nicl.2016.11.023},
  title={Automated white matter fiber tract identification in patients with brain tumors},
  volume={13},
  journal={NeuroImage: Clinical},
  pages={138--153},
  author={O'Donnell, Lauren J. and Suter, Yannick and Rigolo, Laura and Kahali, Pegah and Zhang, Fan and Norton, Isaiah and Albi, Angela and Olubiyi, Olutayo and Meola, Antonio and Essayed, Walid I.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50220">
    <dc:contributor>Rigolo, Laura</dc:contributor>
    <dc:contributor>Albi, Angela</dc:contributor>
    <dc:creator>Olubiyi, Olutayo</dc:creator>
    <dc:contributor>Zhang, Fan</dc:contributor>
    <dc:creator>Norton, Isaiah</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50220"/>
    <dc:creator>Suter, Yannick</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-14T07:16:15Z</dcterms:available>
    <dc:creator>Zhang, Fan</dc:creator>
    <dc:contributor>Suter, Yannick</dc:contributor>
    <dc:creator>Rigolo, Laura</dc:creator>
    <dc:contributor>Meola, Antonio</dc:contributor>
    <dcterms:title>Automated white matter fiber tract identification in patients with brain tumors</dcterms:title>
    <dc:contributor>Essayed, Walid I.</dc:contributor>
    <dcterms:abstract xml:lang="eng">We propose a method for the automated identification of key white matter fiber tracts for neurosurgical planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography, which include peritumoral edema, displacement, and mass effect caused by mass lesions. The proposed method has two parts. First, we learn a data-driven white matter parcellation or fiber cluster atlas using groupwise registration and spectral clustering of multi-fiber tractography from healthy controls. Key fiber tract clusters are identified in the atlas. Next, patient-specific fiber tracts are automatically identified using tractography-based registration to the atlas and spectral embedding of patient tractography. Results indicate good generalization of the data-driven atlas to patients: 80% of the 800 fiber clusters were identified in all 18 patients, and 94% of the 800 fiber clusters were found in 16 or more of the 18 patients. Automated subject-specific tract identification was evaluated by quantitative comparison to subject-specific motor and language functional MRI, focusing on the arcuate fasciculus (language) and corticospinal tracts (motor), which were identified in all patients.&lt;br /&gt;&lt;br /&gt;Results indicate good colocalization: 89 of 95, or 94%, of patient-specific language and motor activations were intersected by the corresponding identified tract. All patient-specific activations were within 3mm of the corresponding language or motor tract. Overall, our results indicate the potential of an automated method for identifying fiber tracts of interest for neurosurgical planning, even in patients with mass lesions.</dcterms:abstract>
    <dc:creator>Albi, Angela</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Essayed, Walid I.</dc:creator>
    <dc:contributor>Olubiyi, Olutayo</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50220/3/Albi_2-v2kvhmw2psdt2.pdf"/>
    <dc:contributor>Kahali, Pegah</dc:contributor>
    <dc:creator>Meola, Antonio</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Kahali, Pegah</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50220/3/Albi_2-v2kvhmw2psdt2.pdf"/>
    <dc:contributor>O'Donnell, Lauren J.</dc:contributor>
    <dcterms:issued>2017</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Norton, Isaiah</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>O'Donnell, Lauren J.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-14T07:16:15Z</dc:date>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen