Probabilistic Graph Layout for Uncertain Network Visualization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHULZ, Christoph, Arlind NOCAJ, Jochen GOERTLER, Oliver DEUSSEN, Ulrik BRANDES, Daniel WEISKOPF, 2017. Probabilistic Graph Layout for Uncertain Network Visualization. In: IEEE Transactions on Visualization and Computer Graphics. 2017, 23(1), pp. 531-540. ISSN 1941-0506. eISSN 1077-2626. Available under: doi: 10.1109/TVCG.2016.2598919BibTex
@article{Schulz2017-01Proba-36890, year={2017}, doi={10.1109/TVCG.2016.2598919}, title={Probabilistic Graph Layout for Uncertain Network Visualization}, number={1}, volume={23}, issn={1941-0506}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={531--540}, author={Schulz, Christoph and Nocaj, Arlind and Goertler, Jochen and Deussen, Oliver and Brandes, Ulrik and Weiskopf, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36890"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2017-01</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-23T14:28:07Z</dc:date> <dcterms:title>Probabilistic Graph Layout for Uncertain Network Visualization</dcterms:title> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36890/1/Schulz_0-386044.pdf"/> <dc:contributor>Nocaj, Arlind</dc:contributor> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/36890"/> <dc:contributor>Schulz, Christoph</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/36890/1/Schulz_0-386044.pdf"/> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Schulz, Christoph</dc:creator> <dcterms:abstract xml:lang="eng">We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance.</dcterms:abstract> <dc:creator>Brandes, Ulrik</dc:creator> <dc:creator>Weiskopf, Daniel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-01-23T14:28:07Z</dcterms:available> <dc:creator>Nocaj, Arlind</dc:creator> <dc:contributor>Goertler, Jochen</dc:contributor> <dc:contributor>Deussen, Oliver</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Goertler, Jochen</dc:creator> </rdf:Description> </rdf:RDF>