Smart Design of Fermi Level Pinning in HfO2-Based Ferroelectric Memories
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Abstract How and why the reliability of ferroelectric HfO 2 ‐ and HZO (Hf 0.5 Zr 0.5 O 2 )‐based memory devices strongly depends on the choice of electrode materials is currently under intense discussion. Interface conditions such as band alignment, defect formation, and doping are recognized as decisive and interrelated parameters, but a unified picture of the physical mechanisms is still missing. Here, two opposite scenarios of band alignment are found in TiN/HZO/TiN and IrO 2 /HZO/IrO 2 using hard X‐ray photoelectron spectroscopy, revealing on the one hand the conditions for a stable device performance, and the origin of their degradation on the other. As a key difference, TiN electrodes scavenge oxygen from the HZO, while IrO 2 electrodes supply it. Considering the electronic doping limit of HfO 2 , a key condition for the stability of ferroelectric devices can be identified: The alignment of the charge neutrality levelwith respect to the metallic Fermi level, which is pinned by the doping limit. Stable device performance can only be achieved for oxygen‐deficient HfO 2 ‐based interfaces, where the Fermi level of the metal electrode is close to the conduction band of the ferroelectric insulator. This empirical model explains the fatigue behavior of HfO 2 ‐based capacitors using either oxygen‐scavenging TiN or oxygen‐supplying IrO 2 electrodes.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BAUMGARTEN, Lutz, Thomas SZYJKA, Terence MITTMANN, Andrei GLOSKOVSKII, Christoph SCHLUETER, Thomas MIKOLAJICK, Uwe SCHROEDER, Martina MÜLLER, 2024. Smart Design of Fermi Level Pinning in HfO2-Based Ferroelectric Memories. In: Advanced Functional Materials. Wiley. 2024, 34(3), 2307120. ISSN 1616-301X. eISSN 1616-3028. Available under: doi: 10.1002/adfm.202307120BibTex
@article{Baumgarten2024Smart-68065, year={2024}, doi={10.1002/adfm.202307120}, title={Smart Design of Fermi Level Pinning in HfO<sub>2</sub>-Based Ferroelectric Memories}, number={3}, volume={34}, issn={1616-301X}, journal={Advanced Functional Materials}, author={Baumgarten, Lutz and Szyjka, Thomas and Mittmann, Terence and Gloskovskii, Andrei and Schlueter, Christoph and Mikolajick, Thomas and Schroeder, Uwe and Müller, Martina}, note={Article Number: 2307120} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68065"> <dc:language>eng</dc:language> <dcterms:issued>2024</dcterms:issued> <dc:creator>Mittmann, Terence</dc:creator> <dc:creator>Schlueter, Christoph</dc:creator> <dc:creator>Gloskovskii, Andrei</dc:creator> <dc:contributor>Mittmann, Terence</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68065/1/Baumgarten_2-v7zj7wnxlpx28.PDF"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-07T12:44:16Z</dcterms:available> <dcterms:title>Smart Design of Fermi Level Pinning in HfO<sub>2</sub>-Based Ferroelectric Memories</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68065"/> <dc:creator>Mikolajick, Thomas</dc:creator> <dc:contributor>Schroeder, Uwe</dc:contributor> <dc:contributor>Müller, Martina</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Müller, Martina</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68065/1/Baumgarten_2-v7zj7wnxlpx28.PDF"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-07T12:44:16Z</dc:date> <dc:contributor>Gloskovskii, Andrei</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:creator>Baumgarten, Lutz</dc:creator> <dc:creator>Schroeder, Uwe</dc:creator> <dc:contributor>Schlueter, Christoph</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Szyjka, Thomas</dc:contributor> <dcterms:abstract>Abstract How and why the reliability of ferroelectric HfO 2 ‐ and HZO (Hf 0.5 Zr 0.5 O 2 )‐based memory devices strongly depends on the choice of electrode materials is currently under intense discussion. Interface conditions such as band alignment, defect formation, and doping are recognized as decisive and interrelated parameters, but a unified picture of the physical mechanisms is still missing. Here, two opposite scenarios of band alignment are found in TiN/HZO/TiN and IrO 2 /HZO/IrO 2 using hard X‐ray photoelectron spectroscopy, revealing on the one hand the conditions for a stable device performance, and the origin of their degradation on the other. As a key difference, TiN electrodes scavenge oxygen from the HZO, while IrO 2 electrodes supply it. Considering the electronic doping limit of HfO 2 , a key condition for the stability of ferroelectric devices can be identified: The alignment of the charge neutrality levelwith respect to the metallic Fermi level, which is pinned by the doping limit. Stable device performance can only be achieved for oxygen‐deficient HfO 2 ‐based interfaces, where the Fermi level of the metal electrode is close to the conduction band of the ferroelectric insulator. This empirical model explains the fatigue behavior of HfO 2 ‐based capacitors using either oxygen‐scavenging TiN or oxygen‐supplying IrO 2 electrodes.</dcterms:abstract> <dc:contributor>Mikolajick, Thomas</dc:contributor> <dc:creator>Szyjka, Thomas</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:contributor>Baumgarten, Lutz</dc:contributor> </rdf:Description> </rdf:RDF>