Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let $A$ be a commutative unital $\mathbb{R}$-algebra and let $\rho$ be a seminorm on $A$ which satisfies $\rho(ab)\leq\rho(a)\rho(b)$. We apply T. Jacobi's representation theorem to determine the closure of a $\sum A^{2d}$-module $S$ of $A$ in the topology induced by $\rho$, for any integer $d\ge1$. We show that this closure is exactly the set of all elements $a\in A$ such that $\alpha(a)\ge0$ for every $\rho$-continuous $\mathbb{R}$-algebra homomorphism $\alpha : A \rightarrow \mathbb{R}$ with $\alpha(S)\subseteq[0,\infty)$, and that this result continues to hold when $\rho$ is replaced by any locally multiplicatively convex topology $\tau$ on $A$. We obtain a representation of any linear functional $L : A \rightarrow \reals$ which is continuous with respect to any such $\rho$ or $\tau$ and non-negative on $S$ as integration with respect to a unique Radon measure on the space of all real valued $\reals$-algebra homomorphisms on $A$, and we characterize the support of the measure obtained in this way.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2012. Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real AlgebrasBibTex
@unpublished{Ghasemi2012Appli-21264, year={2012}, title={Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras}, author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21264"> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T10:16:55Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:creator>Marshall, Murray</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2012</dcterms:issued> <dc:contributor>Marshall, Murray</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21264/1/ghasemi_212648.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">Let $A$ be a commutative unital $\mathbb{R}$-algebra and let $\rho$ be a seminorm on $A$ which satisfies $\rho(ab)\leq\rho(a)\rho(b)$. We apply T. Jacobi's representation theorem to determine the closure of a $\sum A^{2d}$-module $S$ of $A$ in the topology induced by $\rho$, for any integer $d\ge1$. We show that this closure is exactly the set of all elements $a\in A$ such that $\alpha(a)\ge0$ for every $\rho$-continuous $\mathbb{R}$-algebra homomorphism $\alpha : A \rightarrow \mathbb{R}$ with $\alpha(S)\subseteq[0,\infty)$, and that this result continues to hold when $\rho$ is replaced by any locally multiplicatively convex topology $\tau$ on $A$. We obtain a representation of any linear functional $L : A \rightarrow \reals$ which is continuous with respect to any such $\rho$ or $\tau$ and non-negative on $S$ as integration with respect to a unique Radon measure on the space of all real valued $\reals$-algebra homomorphisms on $A$, and we characterize the support of the measure obtained in this way.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21264/1/ghasemi_212648.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T10:16:55Z</dcterms:available> <dc:creator>Ghasemi, Mehdi</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21264"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ghasemi, Mehdi</dc:contributor> <dc:contributor>Kuhlmann, Salma</dc:contributor> </rdf:Description> </rdf:RDF>