Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras

Lade...
Vorschaubild
Dateien
ghasemi_212648.pdf
ghasemi_212648.pdfGröße: 413.07 KBDownloads: 140
Datum
2012
Autor:innen
Ghasemi, Mehdi
Marshall, Murray
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Let $A$ be a commutative unital $\mathbb{R}$-algebra and let $\rho$ be a seminorm on $A$ which satisfies $\rho(ab)\leq\rho(a)\rho(b)$. We apply T. Jacobi's representation theorem to determine the closure of a $\sum A^{2d}$-module $S$ of $A$ in the topology induced by $\rho$, for any integer $d\ge1$. We show that this closure is exactly the set of all elements $a\in A$ such that $\alpha(a)\ge0$ for every $\rho$-continuous $\mathbb{R}$-algebra homomorphism $\alpha : A \rightarrow \mathbb{R}$ with $\alpha(S)\subseteq[0,\infty)$, and that this result continues to hold when $\rho$ is replaced by any locally multiplicatively convex topology $\tau$ on $A$. We obtain a representation of any linear functional $L : A \rightarrow \reals$ which is continuous with respect to any such $\rho$ or $\tau$ and non-negative on $S$ as integration with respect to a unique Radon measure on the space of all real valued $\reals$-algebra homomorphisms on $A$, and we characterize the support of the measure obtained in this way.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2012. Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras
BibTex
@unpublished{Ghasemi2012Appli-21264,
  year={2012},
  title={Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras},
  author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/21264">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T10:16:55Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dc:creator>Marshall, Murray</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2012</dcterms:issued>
    <dc:contributor>Marshall, Murray</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21264/1/ghasemi_212648.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Let $A$ be a commutative unital $\mathbb{R}$-algebra and let $\rho$ be a seminorm on $A$ which satisfies $\rho(ab)\leq\rho(a)\rho(b)$. We apply T. Jacobi's representation theorem to determine the closure of a $\sum A^{2d}$-module $S$ of $A$ in the topology induced by $\rho$, for any integer $d\ge1$. We show that this closure is exactly the set of all elements $a\in A$ such that $\alpha(a)\ge0$ for every $\rho$-continuous $\mathbb{R}$-algebra homomorphism $\alpha : A \rightarrow \mathbb{R}$ with $\alpha(S)\subseteq[0,\infty)$, and that this result continues to hold when $\rho$ is replaced by any locally multiplicatively convex topology $\tau$ on $A$. We obtain a representation of any linear functional $L : A \rightarrow \reals$ which is continuous with respect to any such $\rho$ or $\tau$ and non-negative on $S$ as integration with respect to a unique Radon measure on the space of all real valued $\reals$-algebra homomorphisms on $A$, and we characterize the support of the measure obtained in this way.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21264/1/ghasemi_212648.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T10:16:55Z</dcterms:available>
    <dc:creator>Ghasemi, Mehdi</dc:creator>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21264"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Ghasemi, Mehdi</dc:contributor>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen