Formation of Hierarchical Fuzzy Rule Systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Many fuzzy rule induction algorithms have been proposed in the past. Most of them tend to generate too many rides during the learning process. This is due to data sets obtained from real world systems containing distorted elements or noisy data. Most approaches try to completely ignore outliers, which can be potentially harmful since the example may describe a rare but still extremely interesting phenomena in the data. In order to avoid this conflict, we propose to build a hierarchy of fuzzy rule systems. The goal of this model-hierarchy are interpretable models with only few relevant rules on each level of the hierarchy. The resulting fuzzy model hierarchy forms a structure in which the top model covers all data explicitly and generates a significant smaller number of rules than the original fuzzy rule learner. The models on the bottom, on the other hand, consist of only a few rules in each level and explain pans with only weak relevance in the data. We demonstrate the proposed method's usefulness on several classification benchmark data sets. The results demonstrate how the rule hierarchy allows to build much smaller fuzzy rule systems and how the model-especially at higher levels of the hierarchy-remains interpretable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GABRIEL, Thomas R., Michael R. BERTHOLD, 2003. Formation of Hierarchical Fuzzy Rule Systems. NAFIPS'2003: Conference of the North American Fuzzy Information Processing Society. Chicago, IL, USA. In: 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003. IEEE, 2003, pp. 87-92. ISBN 0-7803-7918-7. Available under: doi: 10.1109/NAFIPS.2003.1226761BibTex
@inproceedings{Gabriel2003Forma-24406, year={2003}, doi={10.1109/NAFIPS.2003.1226761}, title={Formation of Hierarchical Fuzzy Rule Systems}, isbn={0-7803-7918-7}, publisher={IEEE}, booktitle={22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003}, pages={87--92}, author={Gabriel, Thomas R. and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24406"> <dcterms:abstract xml:lang="eng">Many fuzzy rule induction algorithms have been proposed in the past. Most of them tend to generate too many rides during the learning process. This is due to data sets obtained from real world systems containing distorted elements or noisy data. Most approaches try to completely ignore outliers, which can be potentially harmful since the example may describe a rare but still extremely interesting phenomena in the data. In order to avoid this conflict, we propose to build a hierarchy of fuzzy rule systems. The goal of this model-hierarchy are interpretable models with only few relevant rules on each level of the hierarchy. The resulting fuzzy model hierarchy forms a structure in which the top model covers all data explicitly and generates a significant smaller number of rules than the original fuzzy rule learner. The models on the bottom, on the other hand, consist of only a few rules in each level and explain pans with only weak relevance in the data. We demonstrate the proposed method's usefulness on several classification benchmark data sets. The results demonstrate how the rule hierarchy allows to build much smaller fuzzy rule systems and how the model-especially at higher levels of the hierarchy-remains interpretable.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24406/1/Gabriel_244060.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24406/1/Gabriel_244060.pdf"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-17T12:51:38Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-17T12:51:38Z</dcterms:available> <dcterms:title>Formation of Hierarchical Fuzzy Rule Systems</dcterms:title> <dc:contributor>Gabriel, Thomas R.</dc:contributor> <dcterms:bibliographicCitation>NAFIPS 2003 : 22nd International Conference of the North American Fuzzy Information Processing Society - NAFIPS proceedings ; June 27-29, 2002, Tulane University, Chicago, Illinois, USA, July 24-26, 2003 / Ellen L. Walker (ed.). - Piscataway, NJ : IEEE Service Center, 2003. - S. 87-92. - ISBN 0-7803-7918-7</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24406"/> <dc:creator>Gabriel, Thomas R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Berthold, Michael R.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2003</dcterms:issued> </rdf:Description> </rdf:RDF>