Publikation:

Formation of Hierarchical Fuzzy Rule Systems

Lade...
Vorschaubild

Dateien

Gabriel_244060.pdf
Gabriel_244060.pdfGröße: 3.17 MBDownloads: 309

Datum

2003

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003. IEEE, 2003, pp. 87-92. ISBN 0-7803-7918-7. Available under: doi: 10.1109/NAFIPS.2003.1226761

Zusammenfassung

Many fuzzy rule induction algorithms have been proposed in the past. Most of them tend to generate too many rides during the learning process. This is due to data sets obtained from real world systems containing distorted elements or noisy data. Most approaches try to completely ignore outliers, which can be potentially harmful since the example may describe a rare but still extremely interesting phenomena in the data. In order to avoid this conflict, we propose to build a hierarchy of fuzzy rule systems. The goal of this model-hierarchy are interpretable models with only few relevant rules on each level of the hierarchy. The resulting fuzzy model hierarchy forms a structure in which the top model covers all data explicitly and generates a significant smaller number of rules than the original fuzzy rule learner. The models on the bottom, on the other hand, consist of only a few rules in each level and explain pans with only weak relevance in the data. We demonstrate the proposed method's usefulness on several classification benchmark data sets. The results demonstrate how the rule hierarchy allows to build much smaller fuzzy rule systems and how the model-especially at higher levels of the hierarchy-remains interpretable.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

NAFIPS'2003: Conference of the North American Fuzzy Information Processing Society, Chicago, IL, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690GABRIEL, Thomas R., Michael R. BERTHOLD, 2003. Formation of Hierarchical Fuzzy Rule Systems. NAFIPS'2003: Conference of the North American Fuzzy Information Processing Society. Chicago, IL, USA. In: 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003. IEEE, 2003, pp. 87-92. ISBN 0-7803-7918-7. Available under: doi: 10.1109/NAFIPS.2003.1226761
BibTex
@inproceedings{Gabriel2003Forma-24406,
  year={2003},
  doi={10.1109/NAFIPS.2003.1226761},
  title={Formation of Hierarchical Fuzzy Rule Systems},
  isbn={0-7803-7918-7},
  publisher={IEEE},
  booktitle={22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003},
  pages={87--92},
  author={Gabriel, Thomas R. and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24406">
    <dcterms:abstract xml:lang="eng">Many fuzzy rule induction algorithms have been proposed in the past. Most of them tend to generate too many rides during the learning process. This is due to data sets obtained from real world systems containing distorted elements or noisy data. Most approaches try to completely ignore outliers, which can be potentially harmful since the example may describe a rare but still extremely interesting phenomena in the data. In order to avoid this conflict, we propose to build a hierarchy of fuzzy rule systems. The goal of this model-hierarchy are interpretable models with only few relevant rules on each level of the hierarchy. The resulting fuzzy model hierarchy forms a structure in which the top model covers all data explicitly and generates a significant smaller number of rules than the original fuzzy rule learner. The models on the bottom, on the other hand, consist of only a few rules in each level and explain pans with only weak relevance in the data. We demonstrate the proposed method's usefulness on several classification benchmark data sets. The results demonstrate how the rule hierarchy allows to build much smaller fuzzy rule systems and how the model-especially at higher levels of the hierarchy-remains interpretable.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24406/1/Gabriel_244060.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24406/1/Gabriel_244060.pdf"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-17T12:51:38Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-17T12:51:38Z</dcterms:available>
    <dcterms:title>Formation of Hierarchical Fuzzy Rule Systems</dcterms:title>
    <dc:contributor>Gabriel, Thomas R.</dc:contributor>
    <dcterms:bibliographicCitation>NAFIPS 2003 : 22nd International Conference of the North American Fuzzy Information Processing Society - NAFIPS proceedings ; June 27-29, 2002, Tulane University, Chicago, Illinois, USA, July 24-26, 2003 / Ellen L. Walker (ed.). - Piscataway, NJ : IEEE Service Center, 2003. - S. 87-92. - ISBN 0-7803-7918-7</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24406"/>
    <dc:creator>Gabriel, Thomas R.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2003</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen