Publikation: A dialogue of multipoles : matched asymptotic expansion for caged black holes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
No analytic solution is known to date for a black hole in a compact dimension. We develop an analytic perturbation theory where the small parameter is the size of the black hole relative to the size of the compact dimension. We set up a general procedure for an arbitrary order in the perturbation series based on an asymptotic matched expansion between two coordinate patches: the near horizon zone and the asymptotic zone. The procedure is ordinary perturbation expansion in each zone, where additionally some boundary data comes from the other zone, and so the procedure alternates between the zones. It can be viewed as a dialogue of multipoles where the black hole changes its shape (mass multipoles) in response to the field (multipoles) created by its periodic mirrors'', and that in turn changes its field and so on. We present the leading correction to the full metric including the first correction to the area-temperature relation, the leading term for black hole eccentricity and the
Archimedes effect''. The next order corrections will appear in a sequel. On the way we determine independently the static perturbations of the Schwarzschild black hole in dimension d ≥ 5, where the system of equations can be reduced to ``a master equation'' — a single ordinary differential equation. The solutions are hypergeometric functions which in some cases reduce to polynomials.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GORBONOS, Dan, Barak KOL, 2004. A dialogue of multipoles : matched asymptotic expansion for caged black holes. In: Journal of High Energy Physics. Institute of Physics Publishing (IOP). 2004, 2004(6), 053. ISSN 1126-6708. eISSN 1029-8479. Available under: doi: 10.1088/1126-6708/2004/06/053BibTex
@article{Gorbonos2004-06-29dialo-51512, year={2004}, doi={10.1088/1126-6708/2004/06/053}, title={A dialogue of multipoles : matched asymptotic expansion for caged black holes}, number={6}, volume={2004}, issn={1126-6708}, journal={Journal of High Energy Physics}, author={Gorbonos, Dan and Kol, Barak}, note={Article Number: 053} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51512"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:issued>2004-06-29</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-28T13:28:04Z</dcterms:available> <dcterms:title>A dialogue of multipoles : matched asymptotic expansion for caged black holes</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Kol, Barak</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51512"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Kol, Barak</dc:creator> <dc:contributor>Gorbonos, Dan</dc:contributor> <dcterms:abstract xml:lang="eng">No analytic solution is known to date for a black hole in a compact dimension. We develop an analytic perturbation theory where the small parameter is the size of the black hole relative to the size of the compact dimension. We set up a general procedure for an arbitrary order in the perturbation series based on an asymptotic matched expansion between two coordinate patches: the near horizon zone and the asymptotic zone. The procedure is ordinary perturbation expansion in each zone, where additionally some boundary data comes from the other zone, and so the procedure alternates between the zones. It can be viewed as a dialogue of multipoles where the black hole changes its shape (mass multipoles) in response to the field (multipoles) created by its periodic ``mirrors'', and that in turn changes its field and so on. We present the leading correction to the full metric including the first correction to the area-temperature relation, the leading term for black hole eccentricity and the ``Archimedes effect''. The next order corrections will appear in a sequel. On the way we determine independently the static perturbations of the Schwarzschild black hole in dimension d ≥ 5, where the system of equations can be reduced to ``a master equation'' — a single ordinary differential equation. The solutions are hypergeometric functions which in some cases reduce to polynomials.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-28T13:28:04Z</dc:date> <dc:creator>Gorbonos, Dan</dc:creator> </rdf:Description> </rdf:RDF>