Publikation:

A dialogue of multipoles : matched asymptotic expansion for caged black holes

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2004

Autor:innen

Kol, Barak

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of High Energy Physics. Institute of Physics Publishing (IOP). 2004, 2004(6), 053. ISSN 1126-6708. eISSN 1029-8479. Available under: doi: 10.1088/1126-6708/2004/06/053

Zusammenfassung

No analytic solution is known to date for a black hole in a compact dimension. We develop an analytic perturbation theory where the small parameter is the size of the black hole relative to the size of the compact dimension. We set up a general procedure for an arbitrary order in the perturbation series based on an asymptotic matched expansion between two coordinate patches: the near horizon zone and the asymptotic zone. The procedure is ordinary perturbation expansion in each zone, where additionally some boundary data comes from the other zone, and so the procedure alternates between the zones. It can be viewed as a dialogue of multipoles where the black hole changes its shape (mass multipoles) in response to the field (multipoles) created by its periodic mirrors'', and that in turn changes its field and so on. We present the leading correction to the full metric including the first correction to the area-temperature relation, the leading term for black hole eccentricity and the Archimedes effect''. The next order corrections will appear in a sequel. On the way we determine independently the static perturbations of the Schwarzschild black hole in dimension d ≥ 5, where the system of equations can be reduced to ``a master equation'' — a single ordinary differential equation. The solutions are hypergeometric functions which in some cases reduce to polynomials.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GORBONOS, Dan, Barak KOL, 2004. A dialogue of multipoles : matched asymptotic expansion for caged black holes. In: Journal of High Energy Physics. Institute of Physics Publishing (IOP). 2004, 2004(6), 053. ISSN 1126-6708. eISSN 1029-8479. Available under: doi: 10.1088/1126-6708/2004/06/053
BibTex
@article{Gorbonos2004-06-29dialo-51512,
  year={2004},
  doi={10.1088/1126-6708/2004/06/053},
  title={A dialogue of multipoles : matched asymptotic expansion for caged black holes},
  number={6},
  volume={2004},
  issn={1126-6708},
  journal={Journal of High Energy Physics},
  author={Gorbonos, Dan and Kol, Barak},
  note={Article Number: 053}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51512">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2004-06-29</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-28T13:28:04Z</dcterms:available>
    <dcterms:title>A dialogue of multipoles : matched asymptotic expansion for caged black holes</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Kol, Barak</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51512"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Kol, Barak</dc:creator>
    <dc:contributor>Gorbonos, Dan</dc:contributor>
    <dcterms:abstract xml:lang="eng">No analytic solution is known to date for a black hole in a compact dimension. We develop an analytic perturbation theory where the small parameter is the size of the black hole relative to the size of the compact dimension. We set up a general procedure for an arbitrary order in the perturbation series based on an asymptotic matched expansion between two coordinate patches: the near horizon zone and the asymptotic zone. The procedure is ordinary perturbation expansion in each zone, where additionally some boundary data comes from the other zone, and so the procedure alternates between the zones. It can be viewed as a dialogue of multipoles where the black hole changes its shape (mass multipoles) in response to the field (multipoles) created by its periodic ``mirrors'', and that in turn changes its field and so on. We present the leading correction to the full metric including the first correction to the area-temperature relation, the leading term for black hole eccentricity and the ``Archimedes effect''. The next order corrections will appear in a sequel. On the way we determine independently the static perturbations of the Schwarzschild black hole in dimension d ≥ 5, where the system of equations can be reduced to ``a master equation'' — a single ordinary differential equation. The solutions are hypergeometric functions which in some cases reduce to polynomials.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-28T13:28:04Z</dc:date>
    <dc:creator>Gorbonos, Dan</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Diese Publikation teilen