Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEMP, James, Sebastian LÜCKER, Joachim SCHOTT, Laura A. PACE, Jena E. JOHNSON, Bernhard SCHINK, Holger DAIMS, Woodward W. FISCHER, 2016. Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification. In: The ISME Journal. 2016, 10(11), pp. 2669-2678. ISSN 1751-7362. eISSN 1751-7370. Available under: doi: 10.1038/ismej.2016.56BibTex
@article{Hemp2016-11Genom-37712, year={2016}, doi={10.1038/ismej.2016.56}, title={Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification}, number={11}, volume={10}, issn={1751-7362}, journal={The ISME Journal}, pages={2669--2678}, author={Hemp, James and Lücker, Sebastian and Schott, Joachim and Pace, Laura A. and Johnson, Jena E. and Schink, Bernhard and Daims, Holger and Fischer, Woodward W.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37712"> <dc:creator>Pace, Laura A.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Hemp, James</dc:creator> <dc:creator>Johnson, Jena E.</dc:creator> <dc:contributor>Johnson, Jena E.</dc:contributor> <dc:contributor>Daims, Holger</dc:contributor> <dc:creator>Daims, Holger</dc:creator> <dc:creator>Schink, Bernhard</dc:creator> <dc:contributor>Schott, Joachim</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dc:date> <dc:creator>Lücker, Sebastian</dc:creator> <dc:contributor>Hemp, James</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Schink, Bernhard</dc:contributor> <dcterms:title>Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Lücker, Sebastian</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37712"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37712/1/Hemp_2-vqi8ptgkazvs2.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2016-11</dcterms:issued> <dc:contributor>Fischer, Woodward W.</dc:contributor> <dcterms:abstract xml:lang="eng">Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.</dcterms:abstract> <dc:creator>Fischer, Woodward W.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37712/1/Hemp_2-vqi8ptgkazvs2.pdf"/> <dc:contributor>Pace, Laura A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dcterms:available> <dc:creator>Schott, Joachim</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>