Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification

Lade...
Vorschaubild
Dateien
Hemp_2-vqi8ptgkazvs2.pdf
Hemp_2-vqi8ptgkazvs2.pdfGröße: 2.61 MBDownloads: 101
Datum
2016
Autor:innen
Hemp, James
Lücker, Sebastian
Pace, Laura A.
Johnson, Jena E.
Daims, Holger
Fischer, Woodward W.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The ISME Journal. 2016, 10(11), pp. 2669-2678. ISSN 1751-7362. eISSN 1751-7370. Available under: doi: 10.1038/ismej.2016.56
Zusammenfassung

Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HEMP, James, Sebastian LÜCKER, Joachim SCHOTT, Laura A. PACE, Jena E. JOHNSON, Bernhard SCHINK, Holger DAIMS, Woodward W. FISCHER, 2016. Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification. In: The ISME Journal. 2016, 10(11), pp. 2669-2678. ISSN 1751-7362. eISSN 1751-7370. Available under: doi: 10.1038/ismej.2016.56
BibTex
@article{Hemp2016-11Genom-37712,
  year={2016},
  doi={10.1038/ismej.2016.56},
  title={Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification},
  number={11},
  volume={10},
  issn={1751-7362},
  journal={The ISME Journal},
  pages={2669--2678},
  author={Hemp, James and Lücker, Sebastian and Schott, Joachim and Pace, Laura A. and Johnson, Jena E. and Schink, Bernhard and Daims, Holger and Fischer, Woodward W.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37712">
    <dc:creator>Pace, Laura A.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hemp, James</dc:creator>
    <dc:creator>Johnson, Jena E.</dc:creator>
    <dc:contributor>Johnson, Jena E.</dc:contributor>
    <dc:contributor>Daims, Holger</dc:contributor>
    <dc:creator>Daims, Holger</dc:creator>
    <dc:creator>Schink, Bernhard</dc:creator>
    <dc:contributor>Schott, Joachim</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dc:date>
    <dc:creator>Lücker, Sebastian</dc:creator>
    <dc:contributor>Hemp, James</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <dcterms:title>Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Lücker, Sebastian</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37712"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37712/1/Hemp_2-vqi8ptgkazvs2.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2016-11</dcterms:issued>
    <dc:contributor>Fischer, Woodward W.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.</dcterms:abstract>
    <dc:creator>Fischer, Woodward W.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37712/1/Hemp_2-vqi8ptgkazvs2.pdf"/>
    <dc:contributor>Pace, Laura A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dcterms:available>
    <dc:creator>Schott, Joachim</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen