Publikation:

Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification

Lade...
Vorschaubild

Dateien

Hemp_2-vqi8ptgkazvs2.pdf
Hemp_2-vqi8ptgkazvs2.pdfGröße: 2.61 MBDownloads: 111

Datum

2016

Autor:innen

Hemp, James
Lücker, Sebastian
Pace, Laura A.
Johnson, Jena E.
Daims, Holger
Fischer, Woodward W.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The ISME Journal. 2016, 10(11), pp. 2669-2678. ISSN 1751-7362. eISSN 1751-7370. Available under: doi: 10.1038/ismej.2016.56

Zusammenfassung

Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HEMP, James, Sebastian LÜCKER, Joachim SCHOTT, Laura A. PACE, Jena E. JOHNSON, Bernhard SCHINK, Holger DAIMS, Woodward W. FISCHER, 2016. Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification. In: The ISME Journal. 2016, 10(11), pp. 2669-2678. ISSN 1751-7362. eISSN 1751-7370. Available under: doi: 10.1038/ismej.2016.56
BibTex
@article{Hemp2016-11Genom-37712,
  year={2016},
  doi={10.1038/ismej.2016.56},
  title={Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification},
  number={11},
  volume={10},
  issn={1751-7362},
  journal={The ISME Journal},
  pages={2669--2678},
  author={Hemp, James and Lücker, Sebastian and Schott, Joachim and Pace, Laura A. and Johnson, Jena E. and Schink, Bernhard and Daims, Holger and Fischer, Woodward W.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37712">
    <dc:creator>Pace, Laura A.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Hemp, James</dc:creator>
    <dc:creator>Johnson, Jena E.</dc:creator>
    <dc:contributor>Johnson, Jena E.</dc:contributor>
    <dc:contributor>Daims, Holger</dc:contributor>
    <dc:creator>Daims, Holger</dc:creator>
    <dc:creator>Schink, Bernhard</dc:creator>
    <dc:contributor>Schott, Joachim</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dc:date>
    <dc:creator>Lücker, Sebastian</dc:creator>
    <dc:contributor>Hemp, James</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <dcterms:title>Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Lücker, Sebastian</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37712"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37712/1/Hemp_2-vqi8ptgkazvs2.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2016-11</dcterms:issued>
    <dc:contributor>Fischer, Woodward W.</dc:contributor>
    <dcterms:abstract xml:lang="eng">Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.</dcterms:abstract>
    <dc:creator>Fischer, Woodward W.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37712/1/Hemp_2-vqi8ptgkazvs2.pdf"/>
    <dc:contributor>Pace, Laura A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dcterms:available>
    <dc:creator>Schott, Joachim</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen