Enhanced Li-Ion Transport through Selectively Solvated Ionic Layers of Single-Ion Conducting Multiblock Copolymers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We demonstrate enhanced Li+ transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined Li+SO3– ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone. The amount of DMSO (∼21 wt %) calculated from the increased layer spacing is consistent with thermogravimetric analysis. The ionic conductivity through DMSO-solvated ionic layers is >104 times higher than in the dried state, indicating a significant enhancement of ion transport in the presence of this solvent. Dielectric relaxation spectroscopy (DRS) further elucidates the role of the structural relaxation time (τ) and the number of free Li+ (n) on the ionic conductivity (σ). Specifically, DRS reveals that the solvation of ionic domains with DMSO contributes to both accelerating the structural relaxation and the dissociation of ion pairs. This study is the initial demonstration that selective solvation is a viable design strategy to improve ionic conductivity in nanophase separated, single-ion conducting multiblock copolymers.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PARK, Jinseok, Anne SAUMER, Stefan MECKING, Karen I. WINEY, 2022. Enhanced Li-Ion Transport through Selectively Solvated Ionic Layers of Single-Ion Conducting Multiblock Copolymers. In: ACS Macro Letters. ACS Publications. 2022, 11(8), pp. 1008-1013. eISSN 2161-1653. Available under: doi: 10.1021/acsmacrolett.2c00288BibTex
@article{Park2022Enhan-58437, year={2022}, doi={10.1021/acsmacrolett.2c00288}, title={Enhanced Li-Ion Transport through Selectively Solvated Ionic Layers of Single-Ion Conducting Multiblock Copolymers}, number={8}, volume={11}, journal={ACS Macro Letters}, pages={1008--1013}, author={Park, Jinseok and Saumer, Anne and Mecking, Stefan and Winey, Karen I.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58437"> <dcterms:title>Enhanced Li-Ion Transport through Selectively Solvated Ionic Layers of Single-Ion Conducting Multiblock Copolymers</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Saumer, Anne</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58437"/> <dc:creator>Mecking, Stefan</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We demonstrate enhanced Li<sup>+</sup> transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined Li<sup>+</sup>SO<sub>3</sub><sup>–</sup> ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone. The amount of DMSO (∼21 wt %) calculated from the increased layer spacing is consistent with thermogravimetric analysis. The ionic conductivity through DMSO-solvated ionic layers is >10<sup>4</sup> times higher than in the dried state, indicating a significant enhancement of ion transport in the presence of this solvent. Dielectric relaxation spectroscopy (DRS) further elucidates the role of the structural relaxation time (τ) and the number of free Li<sup>+</sup> (n) on the ionic conductivity (σ). Specifically, DRS reveals that the solvation of ionic domains with DMSO contributes to both accelerating the structural relaxation and the dissociation of ion pairs. This study is the initial demonstration that selective solvation is a viable design strategy to improve ionic conductivity in nanophase separated, single-ion conducting multiblock copolymers.</dcterms:abstract> <dc:creator>Winey, Karen I.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T14:53:17Z</dcterms:available> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-30T14:53:17Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Saumer, Anne</dc:contributor> <dcterms:issued>2022</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Park, Jinseok</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Winey, Karen I.</dc:contributor> <dc:contributor>Mecking, Stefan</dc:contributor> <dc:contributor>Park, Jinseok</dc:contributor> </rdf:Description> </rdf:RDF>