Publikation:

On the maximal Lp-regularity of parabolic mixed order systems

Lade...
Vorschaubild

Dateien

266_Denk_Seiler.pdf
266_Denk_Seiler.pdfGröße: 794.4 KBDownloads: 376

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

We study maximal Lp-regularity for a class of pseudodifferential mixed order systems on a space-time cylinder ℝn x ℝ or X x ℝ where X is a closed smooth manifold. To this end we construct a calculus of Volterra pseudodifferential operators and characterize the parabolicity of a system by the invertibility of certain associated symbols. A parabolic system is shown to induce isomorphisms between suitable Lp-Sobolev spaces of Bessel potential or Besov type. If the cross section of the space-time cylinder is compact, the inverse of a parabolic system belongs to the calculus again. As applications we discuss time-dependent Douglis-Nirenberg systems and a linear system arising in the study of the Stefan problem with Gibbs-Thomson correction.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Pseudodifferentialoperatoren, Systeme gemischter Ordnung, maximale Regularität, Pseudodifferential operators, mixed-order systems, maximal regularity

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690DENK, Robert, Jörg SEILER, 2010. On the maximal Lp-regularity of parabolic mixed order systems
BibTex
@techreport{Denk2010maxim-568,
  year={2010},
  series={Konstanzer Schriften in Mathematik},
  title={On the maximal Lp-regularity of parabolic mixed order systems},
  number={266},
  author={Denk, Robert and Seiler, Jörg}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/568">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/568/1/266_Denk_Seiler.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Denk, Robert</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/568/1/266_Denk_Seiler.pdf"/>
    <dc:creator>Denk, Robert</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/568"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:abstract xml:lang="eng">We study maximal L&lt;sub&gt;p&lt;/sub&gt;-regularity for a class of pseudodifferential mixed order systems on a space-time cylinder &amp;#8477;&lt;sup&gt;n&lt;/sup&gt; x &amp;#8477; or X x &amp;#8477; where X is a closed smooth manifold. To this end we construct a calculus of Volterra pseudodifferential operators and characterize the parabolicity of a system by the invertibility of certain associated symbols. A parabolic system is shown to induce isomorphisms between suitable L&lt;sub&gt;p&lt;/sub&gt;-Sobolev spaces of Bessel potential or Besov type. If the cross section of the space-time cylinder is compact, the inverse of a parabolic system belongs to the calculus again. As applications we discuss time-dependent Douglis-Nirenberg systems and a linear system arising in the study of the Stefan problem with Gibbs-Thomson correction.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:05Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:05Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Seiler, Jörg</dc:creator>
    <dc:contributor>Seiler, Jörg</dc:contributor>
    <dcterms:title>On the maximal Lp-regularity of parabolic mixed order systems</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2010</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen