Publikation: On the maximal Lp-regularity of parabolic mixed order systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study maximal Lp-regularity for a class of pseudodifferential mixed order systems on a space-time cylinder ℝn x ℝ or X x ℝ where X is a closed smooth manifold. To this end we construct a calculus of Volterra pseudodifferential operators and characterize the parabolicity of a system by the invertibility of certain associated symbols. A parabolic system is shown to induce isomorphisms between suitable Lp-Sobolev spaces of Bessel potential or Besov type. If the cross section of the space-time cylinder is compact, the inverse of a parabolic system belongs to the calculus again. As applications we discuss time-dependent Douglis-Nirenberg systems and a linear system arising in the study of the Stefan problem with Gibbs-Thomson correction.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, Jörg SEILER, 2010. On the maximal Lp-regularity of parabolic mixed order systemsBibTex
@techreport{Denk2010maxim-568, year={2010}, series={Konstanzer Schriften in Mathematik}, title={On the maximal Lp-regularity of parabolic mixed order systems}, number={266}, author={Denk, Robert and Seiler, Jörg} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/568"> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/568/1/266_Denk_Seiler.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Denk, Robert</dc:contributor> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/568/1/266_Denk_Seiler.pdf"/> <dc:creator>Denk, Robert</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/568"/> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">We study maximal L<sub>p</sub>-regularity for a class of pseudodifferential mixed order systems on a space-time cylinder &#8477;<sup>n</sup> x &#8477; or X x &#8477; where X is a closed smooth manifold. To this end we construct a calculus of Volterra pseudodifferential operators and characterize the parabolicity of a system by the invertibility of certain associated symbols. A parabolic system is shown to induce isomorphisms between suitable L<sub>p</sub>-Sobolev spaces of Bessel potential or Besov type. If the cross section of the space-time cylinder is compact, the inverse of a parabolic system belongs to the calculus again. As applications we discuss time-dependent Douglis-Nirenberg systems and a linear system arising in the study of the Stefan problem with Gibbs-Thomson correction.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:05Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:05Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Seiler, Jörg</dc:creator> <dc:contributor>Seiler, Jörg</dc:contributor> <dcterms:title>On the maximal Lp-regularity of parabolic mixed order systems</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2010</dcterms:issued> </rdf:Description> </rdf:RDF>