Publikation:

Collective movement analysis reveals coordination tactics of team players in football matches

Lade...
Vorschaubild

Dateien

Marcelino_2-vytm75y7kcil5.pdf
Marcelino_2-vytm75y7kcil5.pdfGröße: 1.76 MBDownloads: 72

Datum

2020

Autor:innen

Marcelino, Rui
Sampaio, Jaime
Gonçalves, Bruno

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Chaos, Solitons & Fractals. Elsevier. 2020, 138, 109831. ISSN 0960-0779. eISSN 1873-2887. Verfügbar unter: doi: 10.1016/j.chaos.2020.109831

Zusammenfassung

Collective behavior is a hallmark of every living system and utilizing methods from statistical physics (such as correlation functions) could aid in our understanding of their underlying rules. We analyzed five football (soccer) matches as this game provides a unique but yet mostly unexplored example to study a system of collective cooperation and competition. The aim of our study was to analyze the collective motion patterns exhibited by football players to unfold the underlying coordination among them in order to understand collective strategies associated with team performance. By analyzing pairwise relationships among all the players using spatio-temporal correlation functions we reveal that there exist identifiable collective dynamics that characterize winning and losing teams. Using our metric we find clear and robust differences between the players, indicating a difference in their behavior and their interactions. And this enables us to assign a unique behavioral pattern - a ‘fingerprint’ - for each individual and for each team. Furthermore, we reveal there exists a relationship between the market value of the players and the metrics introduced here, suggesting that these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context team sports could open up new directions for quantitative analyses of human collective behavior.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MARCELINO, Rui, Jaime SAMPAIO, Guy AMICHAY, Bruno GONÇALVES, Iain D. COUZIN, Mate NAGY, 2020. Collective movement analysis reveals coordination tactics of team players in football matches. In: Chaos, Solitons & Fractals. Elsevier. 2020, 138, 109831. ISSN 0960-0779. eISSN 1873-2887. Verfügbar unter: doi: 10.1016/j.chaos.2020.109831
BibTex
@article{Marcelino2020-09Colle-50050,
  year={2020},
  doi={10.1016/j.chaos.2020.109831},
  title={Collective movement analysis reveals coordination tactics of team players in football matches},
  volume={138},
  issn={0960-0779},
  journal={Chaos, Solitons & Fractals},
  author={Marcelino, Rui and Sampaio, Jaime and Amichay, Guy and Gonçalves, Bruno and Couzin, Iain D. and Nagy, Mate},
  note={Article Number: 109831}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50050">
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2020-09</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50050"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50050/1/Marcelino_2-vytm75y7kcil5.pdf"/>
    <dcterms:abstract xml:lang="eng">Collective behavior is a hallmark of every living system and utilizing methods from statistical physics (such as correlation functions) could aid in our understanding of their underlying rules. We analyzed five football (soccer) matches as this game provides a unique but yet mostly unexplored example to study a system of collective cooperation and competition. The aim of our study was to analyze the collective motion patterns exhibited by football players to unfold the underlying coordination among them in order to understand collective strategies associated with team performance. By analyzing pairwise relationships among all the players using spatio-temporal correlation functions we reveal that there exist identifiable collective dynamics that characterize winning and losing teams. Using our metric we find clear and robust differences between the players, indicating a difference in their behavior and their interactions. And this enables us to assign a unique behavioral pattern - a ‘fingerprint’ - for each individual and for each team. Furthermore, we reveal there exists a relationship between the market value of the players and the metrics introduced here, suggesting that these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context team sports could open up new directions for quantitative analyses of human collective behavior.</dcterms:abstract>
    <dc:creator>Marcelino, Rui</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Collective movement analysis reveals coordination tactics of team players in football matches</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-30T07:28:26Z</dc:date>
    <dc:creator>Nagy, Mate</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Nagy, Mate</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-30T07:28:26Z</dcterms:available>
    <dc:creator>Gonçalves, Bruno</dc:creator>
    <dc:contributor>Gonçalves, Bruno</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Amichay, Guy</dc:creator>
    <dc:creator>Sampaio, Jaime</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Amichay, Guy</dc:contributor>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50050/1/Marcelino_2-vytm75y7kcil5.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Marcelino, Rui</dc:contributor>
    <dc:contributor>Sampaio, Jaime</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen