Collective movement analysis reveals coordination tactics of team players in football matches

Lade...
Vorschaubild
Dateien
Marcelino_2-vytm75y7kcil5.pdf
Marcelino_2-vytm75y7kcil5.pdfGröße: 1.76 MBDownloads: 22
Datum
2020
Autor:innen
Marcelino, Rui
Sampaio, Jaime
Gonçalves, Bruno
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Chaos, Solitons & Fractals. Elsevier. 2020, 138, 109831. ISSN 0960-0779. eISSN 1873-2887. Verfügbar unter: doi: 10.1016/j.chaos.2020.109831
Zusammenfassung

Collective behavior is a hallmark of every living system and utilizing methods from statistical physics (such as correlation functions) could aid in our understanding of their underlying rules. We analyzed five football (soccer) matches as this game provides a unique but yet mostly unexplored example to study a system of collective cooperation and competition. The aim of our study was to analyze the collective motion patterns exhibited by football players to unfold the underlying coordination among them in order to understand collective strategies associated with team performance. By analyzing pairwise relationships among all the players using spatio-temporal correlation functions we reveal that there exist identifiable collective dynamics that characterize winning and losing teams. Using our metric we find clear and robust differences between the players, indicating a difference in their behavior and their interactions. And this enables us to assign a unique behavioral pattern - a ‘fingerprint’ - for each individual and for each team. Furthermore, we reveal there exists a relationship between the market value of the players and the metrics introduced here, suggesting that these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context team sports could open up new directions for quantitative analyses of human collective behavior.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690MARCELINO, Rui, Jaime SAMPAIO, Guy AMICHAY, Bruno GONÇALVES, Iain D. COUZIN, Mate NAGY, 2020. Collective movement analysis reveals coordination tactics of team players in football matches. In: Chaos, Solitons & Fractals. Elsevier. 2020, 138, 109831. ISSN 0960-0779. eISSN 1873-2887. Verfügbar unter: doi: 10.1016/j.chaos.2020.109831
BibTex
@article{Marcelino2020-09Colle-50050,
  year={2020},
  doi={10.1016/j.chaos.2020.109831},
  title={Collective movement analysis reveals coordination tactics of team players in football matches},
  volume={138},
  issn={0960-0779},
  journal={Chaos, Solitons & Fractals},
  author={Marcelino, Rui and Sampaio, Jaime and Amichay, Guy and Gonçalves, Bruno and Couzin, Iain D. and Nagy, Mate},
  note={Article Number: 109831}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50050">
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2020-09</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50050"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50050/1/Marcelino_2-vytm75y7kcil5.pdf"/>
    <dcterms:abstract xml:lang="eng">Collective behavior is a hallmark of every living system and utilizing methods from statistical physics (such as correlation functions) could aid in our understanding of their underlying rules. We analyzed five football (soccer) matches as this game provides a unique but yet mostly unexplored example to study a system of collective cooperation and competition. The aim of our study was to analyze the collective motion patterns exhibited by football players to unfold the underlying coordination among them in order to understand collective strategies associated with team performance. By analyzing pairwise relationships among all the players using spatio-temporal correlation functions we reveal that there exist identifiable collective dynamics that characterize winning and losing teams. Using our metric we find clear and robust differences between the players, indicating a difference in their behavior and their interactions. And this enables us to assign a unique behavioral pattern - a ‘fingerprint’ - for each individual and for each team. Furthermore, we reveal there exists a relationship between the market value of the players and the metrics introduced here, suggesting that these metrics could potentially serve as valuable performance indicators in the future, with applications ranging from talent identification to player scouting. In a broader context team sports could open up new directions for quantitative analyses of human collective behavior.</dcterms:abstract>
    <dc:creator>Marcelino, Rui</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Collective movement analysis reveals coordination tactics of team players in football matches</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-30T07:28:26Z</dc:date>
    <dc:creator>Nagy, Mate</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Nagy, Mate</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-30T07:28:26Z</dcterms:available>
    <dc:creator>Gonçalves, Bruno</dc:creator>
    <dc:contributor>Gonçalves, Bruno</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Amichay, Guy</dc:creator>
    <dc:creator>Sampaio, Jaime</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Amichay, Guy</dc:contributor>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50050/1/Marcelino_2-vytm75y7kcil5.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Marcelino, Rui</dc:contributor>
    <dc:contributor>Sampaio, Jaime</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen