Publikation:

A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations

Lade...
Vorschaubild

Dateien

Thomas_2-w1lzfbwes3iv8.pdf
Thomas_2-w1lzfbwes3iv8.pdfGröße: 4.66 MBDownloads: 115

Datum

2022

Autor:innen

Jensen, Frants H.
Manser, Marta B.
Sainburg, Tim
Roch, Marie A.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Animal Ecology. Wiley. 2022, 91(8), pp. 1567-1581. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13754

Zusammenfassung

  1. Background: The manual detection, analysis and classification of animal vocalizations in acoustic recordings is laborious and requires expert knowledge. Hence, there is a need for objective, generalizable methods that detect underlying patterns in these data, categorize sounds into distinct groups and quantify similarities between them. Among all computational methods that have been proposed to accomplish this, neighbourhood-based dimensionality reduction of spectrograms to produce a latent space representation of calls stands out for its conceptual simplicity and effectiveness.

    2. Goal of the study/what was done: Using a dataset of manually annotated meerkat Suricata suricatta vocalizations, we demonstrate how this method can be used to obtain meaningful latent space representations that reflect the established taxonomy of call types. We analyse strengths and weaknesses of the proposed approach, give recommendations for its usage and show application examples, such as the classification of ambiguous calls and the detection of mislabelled calls.

    3. What this means: All analyses are accompanied by example code to help researchers realize the potential of this method for the study of animal vocalizations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690THOMAS, Mara, Frants H. JENSEN, Baptiste AVERLY, Vlad DEMARTSEV, Marta B. MANSER, Tim SAINBURG, Marie A. ROCH, Ariana STRANDBURG-PESHKIN, 2022. A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations. In: Journal of Animal Ecology. Wiley. 2022, 91(8), pp. 1567-1581. ISSN 0021-8790. eISSN 1365-2656. Available under: doi: 10.1111/1365-2656.13754
BibTex
@article{Thomas2022-08pract-57910,
  year={2022},
  doi={10.1111/1365-2656.13754},
  title={A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations},
  number={8},
  volume={91},
  issn={0021-8790},
  journal={Journal of Animal Ecology},
  pages={1567--1581},
  author={Thomas, Mara and Jensen, Frants H. and Averly, Baptiste and Demartsev, Vlad and Manser, Marta B. and Sainburg, Tim and Roch, Marie A. and Strandburg-Peshkin, Ariana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57910">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57910"/>
    <dc:creator>Averly, Baptiste</dc:creator>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Thomas, Mara</dc:contributor>
    <dc:contributor>Strandburg-Peshkin, Ariana</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:contributor>Sainburg, Tim</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57910/1/Thomas_2-w1lzfbwes3iv8.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-01T09:18:15Z</dc:date>
    <dcterms:title>A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations</dcterms:title>
    <dc:creator>Sainburg, Tim</dc:creator>
    <dc:contributor>Demartsev, Vlad</dc:contributor>
    <dc:creator>Roch, Marie A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:contributor>Averly, Baptiste</dc:contributor>
    <dc:contributor>Roch, Marie A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-01T09:18:15Z</dcterms:available>
    <dc:creator>Jensen, Frants H.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Manser, Marta B.</dc:contributor>
    <dcterms:abstract xml:lang="eng">1. Background: The manual detection, analysis and classification of animal vocalizations in acoustic recordings is laborious and requires expert knowledge. Hence, there is a need for objective, generalizable methods that detect underlying patterns in these data, categorize sounds into distinct groups and quantify similarities between them. Among all computational methods that have been proposed to accomplish this, neighbourhood-based dimensionality reduction of spectrograms to produce a latent space representation of calls stands out for its conceptual simplicity and effectiveness.&lt;br /&gt;&lt;br /&gt;2. Goal of the study/what was done: Using a dataset of manually annotated meerkat Suricata suricatta vocalizations, we demonstrate how this method can be used to obtain meaningful latent space representations that reflect the established taxonomy of call types. We analyse strengths and weaknesses of the proposed approach, give recommendations for its usage and show application examples, such as the classification of ambiguous calls and the detection of mislabelled calls.&lt;br /&gt;&lt;br /&gt;3. What this means: All analyses are accompanied by example code to help researchers realize the potential of this method for the study of animal vocalizations.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Strandburg-Peshkin, Ariana</dc:creator>
    <dc:creator>Manser, Marta B.</dc:creator>
    <dcterms:issued>2022-08</dcterms:issued>
    <dc:creator>Thomas, Mara</dc:creator>
    <dc:contributor>Jensen, Frants H.</dc:contributor>
    <dc:creator>Demartsev, Vlad</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57910/1/Thomas_2-w1lzfbwes3iv8.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen