Publikation:

Self-Improving Robotic Brushstroke Replication

Lade...
Vorschaubild

Dateien

Guelzow_2-w4pun4ojvh302.pdf
Guelzow_2-w4pun4ojvh302.pdfGröße: 8.65 MBDownloads: 423

Datum

2018

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Arts. 2018, 7(4), 84. eISSN 2076-0752. Available under: doi: 10.3390/arts7040084

Zusammenfassung

Painting robots, like e-David, are currently unable to create precise strokes in their paintings. We present a method to analyse given brushstrokes and extract their trajectory and width using a brush behaviour model and photographs of strokes painted by humans. Within the process, the robot experiments autonomously with different brush trajectories to improve the reproduction results, which are precise within a few millimetres for strokes up to 100 millimetres length. The method can be generalised to other robotic tasks with imprecise tools and visible results, like polishing or milling.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

robotics; painting; art; generative method; brush

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GÜLZOW, Jörg Marvin, Liat GRAYVER, Oliver DEUSSEN, 2018. Self-Improving Robotic Brushstroke Replication. In: Arts. 2018, 7(4), 84. eISSN 2076-0752. Available under: doi: 10.3390/arts7040084
BibTex
@article{Gulzow2018-12SelfI-44390,
  year={2018},
  doi={10.3390/arts7040084},
  title={Self-Improving Robotic Brushstroke Replication},
  number={4},
  volume={7},
  journal={Arts},
  author={Gülzow, Jörg Marvin and Grayver, Liat and Deussen, Oliver},
  note={Article Number: 84}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44390">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Gülzow, Jörg Marvin</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44390/3/Guelzow_2-w4pun4ojvh302.pdf"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44390/3/Guelzow_2-w4pun4ojvh302.pdf"/>
    <dcterms:abstract xml:lang="eng">Painting robots, like e-David, are currently unable to create precise strokes in their paintings. We present a method to analyse given brushstrokes and extract their trajectory and width using a brush behaviour model and photographs of strokes painted by humans. Within the process, the robot experiments autonomously with different brush trajectories to improve the reproduction results, which are precise within a few millimetres for strokes up to 100 millimetres length. The method can be generalised to other robotic tasks with imprecise tools and visible results, like polishing or milling.</dcterms:abstract>
    <dc:contributor>Gülzow, Jörg Marvin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:49:18Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Grayver, Liat</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Self-Improving Robotic Brushstroke Replication</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44390"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:49:18Z</dcterms:available>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:issued>2018-12</dcterms:issued>
    <dc:creator>Grayver, Liat</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen