Publikation:

Towards an Interpretable Latent Space : an Intuitive Comparison of Autoencoders with Variational Autoencoders

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the Workshop on Visualization for AI Explainability 2018 (VISxAI). 2018

Zusammenfassung

We present an intuitive comparison of Auto-Encoders (AE) with Variational Auto-Encoders (VAE) by visualizing their latent activations. In order to do this, we trained an AE and the corresponding VAE on the MNIST dataset. To give a feeling for the latent compression, we visualize the latent activations of the AE/VAE by displaying the 4 latent variables in a parallel coordinate system. We provide an introduction to the architectures of AEs/VAEs and draw a comparison between the two models.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

visualization, machine learning, explainable machine learning, autoencoders, variational autoencoders, latent space

Konferenz

IEEE VIS 2018, 21. Okt. 2018 - 26. Okt. 2018, Berlin
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPINNER, Thilo, Jonas KÖRNER, Jochen GÖRTLER, Oliver DEUSSEN, 2018. Towards an Interpretable Latent Space : an Intuitive Comparison of Autoencoders with Variational Autoencoders. IEEE VIS 2018. Berlin, 21. Okt. 2018 - 26. Okt. 2018. In: Proceedings of the Workshop on Visualization for AI Explainability 2018 (VISxAI). 2018
BibTex
@inproceedings{Spinner2018Towar-43657,
  year={2018},
  title={Towards an Interpretable Latent Space : an Intuitive Comparison of Autoencoders with Variational Autoencoders},
  url={https://thilospinner.com/towards-an-interpretable-latent-space/},
  booktitle={Proceedings of the Workshop on Visualization for AI Explainability 2018 (VISxAI)},
  author={Spinner, Thilo and Körner, Jonas and Görtler, Jochen and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43657">
    <dc:creator>Spinner, Thilo</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-05T12:45:45Z</dc:date>
    <dc:creator>Görtler, Jochen</dc:creator>
    <dcterms:abstract xml:lang="eng">We present an intuitive comparison of Auto-Encoders (AE) with Variational Auto-Encoders (VAE) by visualizing their latent activations. In order to do this, we trained an AE and the corresponding VAE on the MNIST dataset. To give a feeling for the latent compression, we visualize the latent activations of the AE/VAE by displaying the 4 latent variables in a parallel coordinate system. We provide an introduction to the architectures of AEs/VAEs and draw a comparison between the two models.</dcterms:abstract>
    <dc:creator>Körner, Jonas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Spinner, Thilo</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-05T12:45:45Z</dcterms:available>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43657"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Towards an Interpretable Latent Space : an Intuitive Comparison of Autoencoders with Variational Autoencoders</dcterms:title>
    <dc:contributor>Görtler, Jochen</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Körner, Jonas</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2018-10-27

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen