A coalgebraic view on decorated traces
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the concurrency theory, various semantic equivalences on transition systems are based on traces decorated with some additional observations, generally referred to as decorated traces. Using the generalized powerset construction, recently introduced by a subset of the authors (Silva et al. 2010 FSTTCS. LIPIcs 8 272–283), we give a coalgebraic presentation of decorated trace semantics. The latter include ready, failure, (complete) trace, possible futures, ready trace and failure trace semantics for labelled transition systems, and ready, (maximal) failure and (maximal) trace semantics for generative probabilistic systems. This yields a uniform notion of minimal representatives for the various decorated trace equivalences, in terms of final Moore automata. As a consequence, proofs of decorated trace equivalence can be given by coinduction, using different types of (Moore-) bisimulation (up-to context).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BONCHI, Filippo, Marcello BONSANGUE, Georgiana CALTAIS, Jan RUTTEN, Alexandra SILVA, 2016. A coalgebraic view on decorated traces. In: Mathematical Structures in Computer Science. 2016, 26(07), pp. 1234-1268. ISSN 0960-1295. eISSN 1469-8072. Available under: doi: 10.1017/S0960129514000449BibTex
@article{Bonchi2016-10coalg-44670, year={2016}, doi={10.1017/S0960129514000449}, title={A coalgebraic view on decorated traces}, number={07}, volume={26}, issn={0960-1295}, journal={Mathematical Structures in Computer Science}, pages={1234--1268}, author={Bonchi, Filippo and Bonsangue, Marcello and Caltais, Georgiana and Rutten, Jan and Silva, Alexandra} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44670"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T08:25:04Z</dc:date> <dc:creator>Silva, Alexandra</dc:creator> <dcterms:title>A coalgebraic view on decorated traces</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2016-10</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44670/1/Bonchi_2-w6fi0wlaxn3h7.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44670"/> <dc:creator>Bonsangue, Marcello</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Rutten, Jan</dc:contributor> <dc:contributor>Silva, Alexandra</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-23T08:25:04Z</dcterms:available> <dc:creator>Caltais, Georgiana</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">In the concurrency theory, various semantic equivalences on transition systems are based on traces decorated with some additional observations, generally referred to as decorated traces. Using the generalized powerset construction, recently introduced by a subset of the authors (Silva et al. 2010 FSTTCS. LIPIcs 8 272–283), we give a coalgebraic presentation of decorated trace semantics. The latter include ready, failure, (complete) trace, possible futures, ready trace and failure trace semantics for labelled transition systems, and ready, (maximal) failure and (maximal) trace semantics for generative probabilistic systems. This yields a uniform notion of minimal representatives for the various decorated trace equivalences, in terms of final Moore automata. As a consequence, proofs of decorated trace equivalence can be given by coinduction, using different types of (Moore-) bisimulation (up-to context).</dcterms:abstract> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44670/1/Bonchi_2-w6fi0wlaxn3h7.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Rutten, Jan</dc:creator> <dc:contributor>Caltais, Georgiana</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Bonsangue, Marcello</dc:contributor> <dc:contributor>Bonchi, Filippo</dc:contributor> <dc:creator>Bonchi, Filippo</dc:creator> </rdf:Description> </rdf:RDF>