X-ray crystallographic analysis of the archaeal transcriptional regulator TrmB and development of a graphical user interface for the monochromatic diffraction data processing software XDS
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In 1970 Francis Crick published his "Central dogma of molecular biology", a framework for understanding the transfer of information between sequential information-carrying biopolymers,namely DNA, RNA and proteins. This idea occurred because all these biopolymers are linear polymers, so the sequence of their monomers can encode information. Transcription plays an important role in the flow of biological information because during transcription DNA information is copied into mRNA, of which subsequently proteins can be synthesized using the information in the mRNA as a template. But this linear flux of information is not always the same: like in big technical control loops there are several regulatory mechanisms that, depending on the information that is introduced into the system from diverse sources, control that flow of information. One such regulatory instance are transcriptional regulators. They control the information transfer from DNA to mRNA. TrmB from Thermococcus litoralis and Pyrococcus furiosus, two archaeal organisms, is such a transcriptional regulator. Gene expression in archaea relies on a eukaryotic-like transcription machinery and eukaryotic-like promoter elements but bacterial-like regulatory transcription factors. TrmB controls the expression of two different ABC transporters in P. furiosus, depending on the presence of different sugars (they are the substrates of the two transporters) within the cell. The DNA binding sites for TrmB in the two cases differ: one is palindromic, whereas the other is nonpalindromic. A big obstacle during this work was the low solubility of TrmB. This is why a truncated version lacking the DNA binding domain of the protein was constructed by Sung-Jae Lee: TrmBΔ2−109. The structure of this sugar binding domain of TrmB with bound maltose could be solved at 1.5Å and led to an understanding of the sugar binding mode of TrmB. The sugar binding pocket of TrmBΔ2−109 does not resemble the canonical substrate binding pocket of eubacterial sugar-binding transcriptional regulators and periplasmic binding proteins and the bound maltose in TrmBΔ2−109 is sticking to the surface, wheras the sugars are bound to the eubacterial proteins deeply within the protein. Almost all hydrogen bonds between TrmBΔ2−109 and the maltose are formed between TrmBΔ2−109 and the nonreducing glucosyl residue of maltose whereas only one hydrogen is formed between TrmBΔ2−109 and the reducing glucosyl moiety of maltose. Extensive solubility tests with TrmB finally led to buffer conditions enabling to concentrate the protein to levels necessary for successful protein crystallization. Using this buffer, the protein could be crystallized with bound sucrose. The structure of TrmB revealed that the DNA binding domain is connected with the sugar binding domain via a short linker and consists of a winged helix-turn-helix motif preceded and succeeded by helices. The helices succeeding the winged helix-turn-helix motif of two monomers can form a coiled-coil arrangement leading to a TrmB dimer whose DNA binding domain architecture resembles those of other archaeal (putative) transcriptional regulators. This structure gives an idea of how TrmB could bind to its two different DNA binding sites. Another part of this work was the development of a Graphical User Interface for the data integration software XDS: XDSi. XDS is a text-based software for processing monochromatic diffraction data of protein crystals recorded by the rotation method. In the world of a crystallographer there are two big sticking points: producing diffracting protein crystals and determining the structure of the crystallized protein from the recorded reflection data sets. Like protein crystallization trials stand and fall with the purification protocol, determining the structure of a crystallized protein depends to a considerable part on the data integration step. The initial notion of XDSi was to have a Graphical User Interface to XDS that should automatically run XDS for a given dataset and subsequently produce plots representing the most informative data of the output files generated by the different XDS steps. In that way it would facilitate the handling of XDS for unexperienced users and save time for experienced users. The visualized output of important statistics would be easier to estimate and otherwise unrecognized errors could be avoided. XDSi is based on the scripting language Tcl in combination with the interpreter Tk (both implemented as C libraries) and the windowing shell wish. Since Tcl/Tk and the wish provide generic programming facilities as well as the ability to execute other programs, XDSi evolved into a Graphical User Interface that allows automatic processing and spacegroup assignment of one or multiple datasets so that the user can focus his finetuning efforts on the most promising of his datasets.
Zusammenfassung in einer weiteren Sprache
Im Jahre 1970 publizierte Francis Crick sein "Zentrales Dogma der Molekularbiologie", ein theoretisches Grundgerüst, das den Transfer von Information zwischen informationstragenden biologischen Molekülen, nämlich der DNA, RNA und Proteinen verständlichmachen sollte. Die Idee eines solchen Informationsflusses entstand aufgrund der Tatsache, daß alle diese biologischen Moleküle linear aufgebaute Polymere sind, so daß sie durch die spezielle Aufeinanderfolge ihrer einzelnen Bausteine ein Träger von Information sein können. Im Fluß biologischer Information spielt die Transkription eine wichtige Rolle. Während der Transkription wird nämlich Information von der DNA in mRNA übertragen. Aus dieser können anschließend Proteine synthetisiert werden, wobei die Information, die in der mRNA gespeichert ist als Vorlage dient. Aber dieser lineare Informationsfluß weist nicht immer die gleiche Bandbreite auf: wie in großen technischen Regelkreisen gibt es verschiedene Regulationsmechanismen, die den Informationsfluß regeln; abhängig von Information, die durch verschiedenste Quellen in das System eingebracht und "registriert" wird. Eine solche regulatorische Instanz sind transkriptionelle Regulatoren. Sie kontrollieren den Transfer von Information von der DNA in mRNA. TrmB aus Thermococcus litoralis und Pyrococcus furiosus, zweier Archaeen, ist solch ein transkriptioneller Regulator. Genexpression in Archaeen basiert auf einem eukaryontenähnlichen Transkriptionsapparat und eukaryontenähnlichen Promotoren, benutzt jedoch bakterienähnliche Transkriptionsfaktoren. TrmB reguliert die Expression zweier verschiedener ABC Transporter in P. furiosus, abhängig von der Gegenwart verschiedener Zucker (diese sind die Substrate der beiden ABC Transporter) innerhalb der Zelle. Die DNA Bindestellen für TrmB unterscheiden sich für die zwei verschiedenen Promotoren: die eine der beiden ist palindromisch, die andere nicht. Im Verlaufe dieser Arbeit stellte die schlechte Löslichkeit von TrmB ein großes Problem dar. Deswegen konstruierte Sung-Jae Lee eine trunkierte Version des Proteines, der die DNA Bindestelle fehlte: TrmBΔ2−109. Die Struktur dieser Zuckerbindedomäne von TrmB mit gebundener Maltose konnte gelöst werden und gewährte Einsicht in den Zuckerbindemodus von TrmB. Die Zuckerbindetasche von TrmBΔ2−109 hat keine Ähnlichkeit mit der kanonischen Substratbindetasche eubakterieller zuckerbindender Transkriptionsregulatoren oder periplasmatischen Bindeproteinen. Die gebundene Maltose im Falle von TrmBΔ2−109 ragt an die Oberfläche, wohingegen die Zucker in eubakteriellen Proteinen tief im Inneren der Proteine gebunden sind. Beinahe alle Wasserstoffbrücken zwischen TrmBΔ2−109 und der Maltose liegen am nichtreduzierenden Glucosylrest des Zuckers. Nur eine Wasserstoffbrücke besteht zwischen TrmBΔ2−109 und der reduzierenden Glucosylhälfte der Maltose. Mit Hilfe von extensiven Löslichkeitstests konnten schließlich Pufferbedingungen gefunden werden, in denen TrmB so weit aufkonzentriert werden konnte, daß erfolgversprechende Kristallisationsansätze möglich wurden. So konnte TrmB mit gebundener Sucrose kristallisiert werden. Die Struktur der DNA Bindedomäne besteht aus einem von zwei Helizes umflankten "winged helix-turn-helix motif". Die beiden diesem Motiv jeweils nachfolgenden Helizes zweier Monomere können ein "coiled coil" Arrangement ausbilden und so ein TrmB Dimer erzeugen, dessen DNA Bindedomänenarchitektur derer einiger mutmaßlicher archaeeller Transkriptionsregulatoren ähnelt. Diese Struktur führte auch zu Modellen möglicher DNA Bindemodi für die beiden verschiedenen DNA Bindestellen von TrmB. Ein anderer Teil dieser Arbeit war die Entwicklung einer graphischen Benutzeroberfläche für die Datenintegrationssoftware XDS: XDSi. XDS ist eine textbasierte Software zur Prozessierung monochromatischer Beugungsdaten von Proteinkristallen, die mit Hilfe der Rotationsmethode aufgenommen wurden. In der Welt eines Kristallographen existieren zwei hohe Hürden: Die Erzeugung von Proteinkristallen und die Bestimmung der Struktur eines erfolgreich kristallisierten Proteines anhand der aufgenommenen Beugungsdaten. So wie Versuche zur Proteinkristallisation in hohem Maße von einem erfolgreichen Reinigungsprotokoll abhängen, steht und fällt die erfolgreiche Lösung der Proteinstruktur mit der Güte der Datenintegration. Anfänglich sollte XDSi eine graphische Benutzeroberfläche für XDS sein, die eine XDS Auswertung für einen gegebenen Datensatz durchführt und anschließend die wichtigsten Daten der von XDS erzeugten Dateien graphisch darstellt. XDSi basiert auf der Skriptsprache Tcl in Kombination mit dem Interpreter Tk, die beide als C Bibliotheken implementiert sind, und der wish-Shell. Da Tcl/Tk und die wish auch die Ausführung anderer Programme aus XDSi heraus ermöglichen, entwickelte sich XDSi zu einer graphischen Benutzeroberfläche, die die automatische Prozessierung und Raumgruppenbestimmung multipler Datensätze mit minimalstem Benutzeraufwand ermöglicht.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRUG, Michael, 2009. X-ray crystallographic analysis of the archaeal transcriptional regulator TrmB and development of a graphical user interface for the monochromatic diffraction data processing software XDS [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Krug2009cryst-8832, year={2009}, title={X-ray crystallographic analysis of the archaeal transcriptional regulator TrmB and development of a graphical user interface for the monochromatic diffraction data processing software XDS}, author={Krug, Michael}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/8832"> <dcterms:abstract xml:lang="eng">In 1970 Francis Crick published his "Central dogma of molecular biology", a framework for understanding the transfer of information between sequential information-carrying biopolymers,namely DNA, RNA and proteins. This idea occurred because all these biopolymers are linear polymers, so the sequence of their monomers can encode information. Transcription plays an important role in the flow of biological information because during transcription DNA information is copied into mRNA, of which subsequently proteins can be synthesized using the information in the mRNA as a template. But this linear flux of information is not always the same: like in big technical control loops there are several regulatory mechanisms that, depending on the information that is introduced into the system from diverse sources, control that flow of information. One such regulatory instance are transcriptional regulators. They control the information transfer from DNA to mRNA. TrmB from Thermococcus litoralis and Pyrococcus furiosus, two archaeal organisms, is such a transcriptional regulator. Gene expression in archaea relies on a eukaryotic-like transcription machinery and eukaryotic-like promoter elements but bacterial-like regulatory transcription factors. TrmB controls the expression of two different ABC transporters in P. furiosus, depending on the presence of different sugars (they are the substrates of the two transporters) within the cell. The DNA binding sites for TrmB in the two cases differ: one is palindromic, whereas the other is nonpalindromic. A big obstacle during this work was the low solubility of TrmB. This is why a truncated version lacking the DNA binding domain of the protein was constructed by Sung-Jae Lee: TrmB<sub>&#916;2&#8722;109</sub>. The structure of this sugar binding domain of TrmB with bound maltose could be solved at 1.5Å and led to an understanding of the sugar binding mode of TrmB. The sugar binding pocket of TrmB<sub>&#916;2&#8722;109</sub> does not resemble the canonical substrate binding pocket of eubacterial sugar-binding transcriptional regulators and periplasmic binding proteins and the bound maltose in TrmB<sub>&#916;2&#8722;109</sub> is sticking to the surface, wheras the sugars are bound to the eubacterial proteins deeply within the protein. Almost all hydrogen bonds between TrmB<sub>&#916;2&#8722;109</sub> and the maltose are formed between TrmB<sub>&#916;2&#8722;109</sub> and the nonreducing glucosyl residue of maltose whereas only one hydrogen is formed between TrmB<sub>&#916;2&#8722;109</sub> and the reducing glucosyl moiety of maltose. Extensive solubility tests with TrmB finally led to buffer conditions enabling to concentrate the protein to levels necessary for successful protein crystallization. Using this buffer, the protein could be crystallized with bound sucrose. The structure of TrmB revealed that the DNA binding domain is connected with the sugar binding domain via a short linker and consists of a winged helix-turn-helix motif preceded and succeeded by helices. The helices succeeding the winged helix-turn-helix motif of two monomers can form a coiled-coil arrangement leading to a TrmB dimer whose DNA binding domain architecture resembles those of other archaeal (putative) transcriptional regulators. This structure gives an idea of how TrmB could bind to its two different DNA binding sites. Another part of this work was the development of a Graphical User Interface for the data integration software XDS: XDSi. XDS is a text-based software for processing monochromatic diffraction data of protein crystals recorded by the rotation method. In the world of a crystallographer there are two big sticking points: producing diffracting protein crystals and determining the structure of the crystallized protein from the recorded reflection data sets. Like protein crystallization trials stand and fall with the purification protocol, determining the structure of a crystallized protein depends to a considerable part on the data integration step. The initial notion of XDSi was to have a Graphical User Interface to XDS that should automatically run XDS for a given dataset and subsequently produce plots representing the most informative data of the output files generated by the different XDS steps. In that way it would facilitate the handling of XDS for unexperienced users and save time for experienced users. The visualized output of important statistics would be easier to estimate and otherwise unrecognized errors could be avoided. XDSi is based on the scripting language Tcl in combination with the interpreter Tk (both implemented as C libraries) and the windowing shell wish. Since Tcl/Tk and the wish provide generic programming facilities as well as the ability to execute other programs, XDSi evolved into a Graphical User Interface that allows automatic processing and spacegroup assignment of one or multiple datasets so that the user can focus his finetuning efforts on the most promising of his datasets.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:creator>Krug, Michael</dc:creator> <dc:format>application/pdf</dc:format> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>X-ray crystallographic analysis of the archaeal transcriptional regulator TrmB and development of a graphical user interface for the monochromatic diffraction data processing software XDS</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:47:11Z</dcterms:available> <dc:language>deu</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8832/1/diss_KrugM.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/8832"/> <dcterms:issued>2009</dcterms:issued> <dc:contributor>Krug, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:47:11Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/8832/1/diss_KrugM.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>