Publikation:

How are Mathematical Objects Constituted? A Structuralist Answer

Lade...
Vorschaubild

Dateien

Spohn_2006_How_are_Mathematical.pdf
Spohn_2006_How_are_Mathematical.pdfGröße: 394.45 KBDownloads: 140

Datum

2006

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006. 2006, pp. 106-119

Zusammenfassung

The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz principle according to which each object is uniquely characterized by its proper and possibly relational essence (where proper means not referring to identity")

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

GAP. 6, 11. Sept. 2006 - 14. Sept. 2006, Berlin
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPOHN, Wolfgang, 2006. How are Mathematical Objects Constituted? A Structuralist Answer. GAP. 6. Berlin, 11. Sept. 2006 - 14. Sept. 2006. In: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006. 2006, pp. 106-119
BibTex
@inproceedings{Spohn2006Mathe-3504,
  year={2006},
  title={How are Mathematical Objects Constituted? A Structuralist Answer},
  booktitle={GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006},
  pages={106--119},
  author={Spohn, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3504">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dc:date>
    <dc:contributor>Spohn, Wolfgang</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3504/1/Spohn_2006_How_are_Mathematical.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3504"/>
    <dcterms:title>How are Mathematical Objects Constituted? A Structuralist Answer</dcterms:title>
    <dcterms:abstract xml:lang="eng">The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz  principle according to which each object is uniquely characterized by its proper and possibly relational essence (where  proper  means  not referring to identity")</dcterms:abstract>
    <dcterms:bibliographicCitation>Paper contribution to the sections of: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006, pp. 106-119</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Spohn, Wolfgang</dc:creator>
    <dcterms:issued>2006</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3504/1/Spohn_2006_How_are_Mathematical.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen