How are Mathematical Objects Constituted? A Structuralist Answer
Lade...
Dateien
Datum
2006
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006. 2006, pp. 106-119
Zusammenfassung
The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz principle according to which each object is uniquely characterized by its proper and possibly relational essence (where proper means not referring to identity")
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
100 Philosophie
Schlagwörter
Konferenz
GAP. 6, 11. Sept. 2006 - 14. Sept. 2006, Berlin
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SPOHN, Wolfgang, 2006. How are Mathematical Objects Constituted? A Structuralist Answer. GAP. 6. Berlin, 11. Sept. 2006 - 14. Sept. 2006. In: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006. 2006, pp. 106-119BibTex
@inproceedings{Spohn2006Mathe-3504, year={2006}, title={How are Mathematical Objects Constituted? A Structuralist Answer}, booktitle={GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006}, pages={106--119}, author={Spohn, Wolfgang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3504"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dc:date> <dc:contributor>Spohn, Wolfgang</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3504/1/Spohn_2006_How_are_Mathematical.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3504"/> <dcterms:title>How are Mathematical Objects Constituted? A Structuralist Answer</dcterms:title> <dcterms:abstract xml:lang="eng">The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz principle according to which each object is uniquely characterized by its proper and possibly relational essence (where proper means not referring to identity")</dcterms:abstract> <dcterms:bibliographicCitation>Paper contribution to the sections of: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006, pp. 106-119</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Spohn, Wolfgang</dc:creator> <dcterms:issued>2006</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3504/1/Spohn_2006_How_are_Mathematical.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dcterms:available> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja