How are Mathematical Objects Constituted? A Structuralist Answer

Lade...
Vorschaubild
Dateien
Spohn_2006_How_are_Mathematical.pdf
Spohn_2006_How_are_Mathematical.pdfGröße: 394.45 KBDownloads: 133
Datum
2006
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006. 2006, pp. 106-119
Zusammenfassung

The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz principle according to which each object is uniquely characterized by its proper and possibly relational essence (where proper means not referring to identity")

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
100 Philosophie
Schlagwörter
Konferenz
GAP. 6, 11. Sept. 2006 - 14. Sept. 2006, Berlin
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SPOHN, Wolfgang, 2006. How are Mathematical Objects Constituted? A Structuralist Answer. GAP. 6. Berlin, 11. Sept. 2006 - 14. Sept. 2006. In: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006. 2006, pp. 106-119
BibTex
@inproceedings{Spohn2006Mathe-3504,
  year={2006},
  title={How are Mathematical Objects Constituted? A Structuralist Answer},
  booktitle={GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006},
  pages={106--119},
  author={Spohn, Wolfgang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/3504">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dc:date>
    <dc:contributor>Spohn, Wolfgang</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3504/1/Spohn_2006_How_are_Mathematical.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3504"/>
    <dcterms:title>How are Mathematical Objects Constituted? A Structuralist Answer</dcterms:title>
    <dcterms:abstract xml:lang="eng">The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz  principle according to which each object is uniquely characterized by its proper and possibly relational essence (where  proper  means  not referring to identity")</dcterms:abstract>
    <dcterms:bibliographicCitation>Paper contribution to the sections of: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006, pp. 106-119</dcterms:bibliographicCitation>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Spohn, Wolfgang</dc:creator>
    <dcterms:issued>2006</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/3504/1/Spohn_2006_How_are_Mathematical.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen