High modulus polyimide particle-reinforcement of epoxy composites
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work, a novel class of fully organic, lightweight composite materials was prepared by incorporating highly crystalline, hydrothermally synthesized poly(p-phenylene pyromellitimide) (PPPI) microparticles into a commercial epoxy matrix. Particle loadings of up to 15 vol% could be achieved. Microstructural, mechanical, and thermal properties of these composites were investigated by scanning electron microscopy, three-point bending and Vickers hardness testing, dynamic mechanical analysis, nanoindentation, and thermogravimetric analysis. The incorporation of the PPPI filler particles into the epoxy matrix was found to be homogeneous. Powder X-ray diffraction shows that PPPI's crystallinity is retained in the composites, and infrared spectroscopy indicates a covalent bonding of PPPI to the epoxy matrix. Flexural modulus and storage modulus were increased by the PPPI addition, while the flexural strain at break was reduced. In contrast to that, the flexural strength remained unaffected by the incorporation of PPPI filler particles. Raising the filler content also resulted in an improvement of hardness. Furthermore, a decrease in glass-transition temperature with increasing PPPI content was observed, as well as a pronounced increase in thermal stability of the composites in comparison to the unfilled cured epoxy resin. These results indicate the high potential of this new class of composites with prospective applicability e.g. in the fields of sports equipment, aerospace, and automotive technology.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ESSMEISTER, Johannes, M. Josef TAUBLAENDER, Thomas KOCH, D. Alonso CERRÓN-INFANTES, Miriam M. UNTERLASS, Thomas KONEGGER, 2021. High modulus polyimide particle-reinforcement of epoxy composites. In: Materials Advances. Royal Society of Chemistry (RSC). 2021, 2(7), pp. 2278-2288. eISSN 2633-5409. Available under: doi: 10.1039/D0MA00980FBibTex
@article{Essmeister2021-04-13modul-54800, year={2021}, doi={10.1039/D0MA00980F}, title={High modulus polyimide particle-reinforcement of epoxy composites}, number={7}, volume={2}, journal={Materials Advances}, pages={2278--2288}, author={Essmeister, Johannes and Taublaender, M. Josef and Koch, Thomas and Cerrón-Infantes, D. Alonso and Unterlass, Miriam M. and Konegger, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54800"> <dc:contributor>Konegger, Thomas</dc:contributor> <dc:creator>Unterlass, Miriam M.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54800/3/Essmeister_2-wdypez9gv71s1.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54800/3/Essmeister_2-wdypez9gv71s1.pdf"/> <dc:creator>Essmeister, Johannes</dc:creator> <dcterms:issued>2021-04-13</dcterms:issued> <dc:language>eng</dc:language> <dc:rights>Attribution 3.0 Unported</dc:rights> <dc:creator>Koch, Thomas</dc:creator> <dcterms:title>High modulus polyimide particle-reinforcement of epoxy composites</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Unterlass, Miriam M.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-03T07:48:52Z</dc:date> <dc:contributor>Taublaender, M. Josef</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-09-03T07:48:52Z</dcterms:available> <dc:contributor>Koch, Thomas</dc:contributor> <dc:creator>Taublaender, M. Josef</dc:creator> <dc:creator>Konegger, Thomas</dc:creator> <dc:creator>Cerrón-Infantes, D. Alonso</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54800"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dcterms:abstract xml:lang="eng">In this work, a novel class of fully organic, lightweight composite materials was prepared by incorporating highly crystalline, hydrothermally synthesized poly(p-phenylene pyromellitimide) (PPPI) microparticles into a commercial epoxy matrix. Particle loadings of up to 15 vol% could be achieved. Microstructural, mechanical, and thermal properties of these composites were investigated by scanning electron microscopy, three-point bending and Vickers hardness testing, dynamic mechanical analysis, nanoindentation, and thermogravimetric analysis. The incorporation of the PPPI filler particles into the epoxy matrix was found to be homogeneous. Powder X-ray diffraction shows that PPPI's crystallinity is retained in the composites, and infrared spectroscopy indicates a covalent bonding of PPPI to the epoxy matrix. Flexural modulus and storage modulus were increased by the PPPI addition, while the flexural strain at break was reduced. In contrast to that, the flexural strength remained unaffected by the incorporation of PPPI filler particles. Raising the filler content also resulted in an improvement of hardness. Furthermore, a decrease in glass-transition temperature with increasing PPPI content was observed, as well as a pronounced increase in thermal stability of the composites in comparison to the unfilled cured epoxy resin. These results indicate the high potential of this new class of composites with prospective applicability e.g. in the fields of sports equipment, aerospace, and automotive technology.</dcterms:abstract> <dc:contributor>Cerrón-Infantes, D. Alonso</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Essmeister, Johannes</dc:contributor> </rdf:Description> </rdf:RDF>