Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-d

Lade...
Vorschaubild
Dateien
preprint_141.pdf
preprint_141.pdfGröße: 310.34 KBDownloads: 727
Datum
2001
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

We consider linear and nonlinear thermoelastic systems in one space dimension where thermal disturbances are modeled propagating as wave-like pulses traveling at finite speed. This removal of the physical paradox of infinite propagation speed in the classical theory of thermoelasticity within Fourier's law is achieved using Cattaneo's law for heat conduction. For different boundary conditions, in particular for those arising in pulsed laser heating of solids, the exponential stability of the now purely, but slightly damped, hyperbolic linear system is proved. A comparison to classical hyperbolic-parabolic thermoelasticity is given. For Dirichlet type boundary conditions - rigidly clamped, constant temperature - the global existence of small, smooth solutions and the exponential stability are proved for a nonlinear system.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690RACKE, Reinhard, 2001. Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-d
BibTex
@unpublished{Racke2001Therm-680,
  year={2001},
  title={Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-d},
  author={Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/680">
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2001</dcterms:issued>
    <dc:contributor>Racke, Reinhard</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/680"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/680/1/preprint_141.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/680/1/preprint_141.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:29Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">We consider linear and nonlinear thermoelastic systems in one space dimension where thermal disturbances are modeled propagating as wave-like pulses traveling at finite speed. This removal of the physical paradox of infinite propagation speed in the classical theory of thermoelasticity within Fourier's law is achieved using Cattaneo's law for heat conduction. For different boundary conditions, in particular for those arising in pulsed laser heating of solids, the exponential stability of the now purely, but slightly damped, hyperbolic linear system is proved. A comparison to classical hyperbolic-parabolic thermoelasticity is given. For Dirichlet type boundary conditions - rigidly clamped, constant temperature - the global existence of small, smooth solutions and the exponential stability are proved for a nonlinear system.</dcterms:abstract>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:29Z</dc:date>
    <dcterms:title>Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-d</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen