Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-d
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider linear and nonlinear thermoelastic systems in one space dimension where thermal disturbances are modeled propagating as wave-like pulses traveling at finite speed. This removal of the physical paradox of infinite propagation speed in the classical theory of thermoelasticity within Fourier's law is achieved using Cattaneo's law for heat conduction. For different boundary conditions, in particular for those arising in pulsed laser heating of solids, the exponential stability of the now purely, but slightly damped, hyperbolic linear system is proved. A comparison to classical hyperbolic-parabolic thermoelasticity is given. For Dirichlet type boundary conditions - rigidly clamped, constant temperature - the global existence of small, smooth solutions and the exponential stability are proved for a nonlinear system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RACKE, Reinhard, 2001. Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-dBibTex
@unpublished{Racke2001Therm-680, year={2001}, title={Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-d}, author={Racke, Reinhard} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/680"> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2001</dcterms:issued> <dc:contributor>Racke, Reinhard</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/680"/> <dc:format>application/pdf</dc:format> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/680/1/preprint_141.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/680/1/preprint_141.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:29Z</dcterms:available> <dcterms:abstract xml:lang="eng">We consider linear and nonlinear thermoelastic systems in one space dimension where thermal disturbances are modeled propagating as wave-like pulses traveling at finite speed. This removal of the physical paradox of infinite propagation speed in the classical theory of thermoelasticity within Fourier's law is achieved using Cattaneo's law for heat conduction. For different boundary conditions, in particular for those arising in pulsed laser heating of solids, the exponential stability of the now purely, but slightly damped, hyperbolic linear system is proved. A comparison to classical hyperbolic-parabolic thermoelasticity is given. For Dirichlet type boundary conditions - rigidly clamped, constant temperature - the global existence of small, smooth solutions and the exponential stability are proved for a nonlinear system.</dcterms:abstract> <dc:creator>Racke, Reinhard</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:29Z</dc:date> <dcterms:title>Thermoelasticity with second sound : exponential stability in linear and nonlinear 1-d</dcterms:title> </rdf:Description> </rdf:RDF>