Efficient multidimensional suppression for k-anonymity

Lade...
Vorschaubild
Dateien
Kisilevich.pdf
Kisilevich.pdfGröße: 9.49 MBDownloads: 1079
Datum
2010
Autor:innen
Rokach, Lior
Elovici, Yuval
Shapira, Bracha
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Knowledge and Data Engineering. 2010, 22(3), pp. 334-347. ISSN 1041-4347. Available under: doi: 10.1109/TKDE.2009.91
Zusammenfassung

Many applications that employ data mining techniques involve mining data that include private and sensitive information about the subjects. One way to enable effective data mining while preserving privacy is to anonymize the data set that includes private information about subjects before being released for data mining. One way to anonymize data set is to manipulate its content so that the records adhere to k-anonymity. Two common manipulation techniques used to achieve k-anonymity of a data set are generalization and suppression. Generalization refers to replacing a value with a less specific but semantically consistent value, while suppression refers to not releasing a value at all. Generalization is more commonly applied in this domain since suppression may dramatically reduce the quality of the data mining results if not properly used. However, generalization presents a major drawback as it requires a manually generated domain hierarchy taxonomy for every quasi-identifier in the data set on which k-anonymity has to be performed. In this paper, we propose a new method for achieving k-anonymity named K-anonymity of Classification Trees Using Suppression (kACTUS). In kACTUS, efficient multidimensional suppression is performed, i.e., values are suppressed only on certain records depending on other attribute values, without the need for manually produced domain hierarchy trees. Thus, in kACTUS, we identify attributes that have less influence on the classification of the data records and suppress them if needed in order to comply with k-anonymity. The kACTUS method was evaluated on 10 separate data sets to evaluate its accuracy as compared to other k-anonymity generalization- and suppression-based methods. Encouraging results suggest that kACTUS' predictive performance is better than that of existing k-anonymity algorithms. Specifically, on average, the accuracies of TDS, TDR, and kADET are lower than kACTUS in 3.5, 3.3, and 1.9 percent, respectively, despite their usage of manually defined domain trees. The accuracy gap is increased to 5.3, 4.3, and 3.1 percent, respectively, when no domain trees are used.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Privacy-preserving data mining, k-anonymity, deindentified data, decision trees
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KISILEVICH, Slava, Lior ROKACH, Yuval ELOVICI, Bracha SHAPIRA, 2010. Efficient multidimensional suppression for k-anonymity. In: IEEE Transactions on Knowledge and Data Engineering. 2010, 22(3), pp. 334-347. ISSN 1041-4347. Available under: doi: 10.1109/TKDE.2009.91
BibTex
@article{Kisilevich2010Effic-17484,
  year={2010},
  doi={10.1109/TKDE.2009.91},
  title={Efficient multidimensional suppression for k-anonymity},
  number={3},
  volume={22},
  issn={1041-4347},
  journal={IEEE Transactions on Knowledge and Data Engineering},
  pages={334--347},
  author={Kisilevich, Slava and Rokach, Lior and Elovici, Yuval and Shapira, Bracha}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17484">
    <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Knowledge and Data Engineering ; 22 (2010), 3. - pp. 334-347</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Many applications that employ data mining techniques involve mining data that include private and sensitive information about the subjects. One way to enable effective data mining while preserving privacy is to anonymize the data set that includes private information about subjects before being released for data mining. One way to anonymize data set is to manipulate its content so that the records adhere to k-anonymity. Two common manipulation techniques used to achieve k-anonymity of a data set are generalization and suppression. Generalization refers to replacing a value with a less specific but semantically consistent value, while suppression refers to not releasing a value at all. Generalization is more commonly applied in this domain since suppression may dramatically reduce the quality of the data mining results if not properly used. However, generalization presents a major drawback as it requires a manually generated domain hierarchy taxonomy for every quasi-identifier in the data set on which k-anonymity has to be performed. In this paper, we propose a new method for achieving k-anonymity named K-anonymity of Classification Trees Using Suppression (kACTUS). In kACTUS, efficient multidimensional suppression is performed, i.e., values are suppressed only on certain records depending on other attribute values, without the need for manually produced domain hierarchy trees. Thus, in kACTUS, we identify attributes that have less influence on the classification of the data records and suppress them if needed in order to comply with k-anonymity. The kACTUS method was evaluated on 10 separate data sets to evaluate its accuracy as compared to other k-anonymity generalization- and suppression-based methods. Encouraging results suggest that kACTUS' predictive performance is better than that of existing k-anonymity algorithms. Specifically, on average, the accuracies of TDS, TDR, and kADET are lower than kACTUS in 3.5, 3.3, and 1.9 percent, respectively, despite their usage of manually defined domain trees. The accuracy gap is increased to 5.3, 4.3, and 3.1 percent, respectively, when no domain trees are used.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:35:27Z</dc:date>
    <dcterms:issued>2010</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Shapira, Bracha</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-31T12:35:27Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17484"/>
    <dc:contributor>Kisilevich, Slava</dc:contributor>
    <dcterms:title>Efficient multidimensional suppression for k-anonymity</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Elovici, Yuval</dc:creator>
    <dc:creator>Kisilevich, Slava</dc:creator>
    <dc:contributor>Shapira, Bracha</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Rokach, Lior</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17484/1/Kisilevich.pdf"/>
    <dc:creator>Rokach, Lior</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17484/1/Kisilevich.pdf"/>
    <dc:contributor>Elovici, Yuval</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen