Publikation:

Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

DAMIART
Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Pattern Recognition Letters. 2015, 65, pp. 197-203. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2015.07.027

Zusammenfassung

Abstract Pairwise generalized association rules mined from raw data can be used to connect the concepts of multiple ontologies. In this case the items of rules are hierarchically organized and one can use the relations between them in order to reduce rule redundancy. Recently proposed hierarchical interestingness measures address this issue, taking hierarchical information on the antecedent side into account. In this paper, we extend them to the case of considering two hierarchies on both the antecedent and the consequent sides of a rule. The extended measures are then compared with their counterparts as well as with conventional ones. Three real world datasets from the text mining domain with predefined ground truth sets of associations are used for comparison within the framework of instance-based ontology mapping.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Ontology matching; Association Rules; Data Mining; Interestingness Measures

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2015. Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides. In: Pattern Recognition Letters. 2015, 65, pp. 197-203. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2015.07.027
BibTex
@article{Benites2015Hiera-31863,
  year={2015},
  doi={10.1016/j.patrec.2015.07.027},
  title={Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides},
  volume={65},
  issn={0167-8655},
  journal={Pattern Recognition Letters},
  pages={197--203},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31863">
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Abstract Pairwise generalized association rules mined from raw data can be used to connect the concepts of multiple ontologies. In this case the items of rules are hierarchically organized and one can use the relations between them in order to reduce rule redundancy. Recently proposed hierarchical interestingness measures address this issue, taking hierarchical information on the antecedent side into account. In this paper, we extend them to the case of considering two hierarchies on both the antecedent and the consequent sides of a rule. The extended measures are then compared with their counterparts as well as with conventional ones. Three real world datasets from the text mining domain with predefined ground truth sets of associations are used for comparison within the framework of instance-based ontology mapping.</dcterms:abstract>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31863"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dcterms:title>Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dcterms:available>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen