Publikation: Collective quench dynamics of active photonic lattices in synthetic dimensions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Swiss National Science Foundation: 212735
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Photonic emulators have enabled the study of many solid-state and quantum optics phenomena, such as Anderson localization, topological insulators and non-Hermitian dynamics. Current photonic emulators are generally limited to bosonic behaviour with local interactions, but the use of synthetic dimensions offers a pathway to overcome this constraint. Here we investigate the flow of liquid light in modulated fast-gain ring lasers, and we establish a platform for emulating quench dynamics within a synthetic photonic lattice with equal densities across the reciprocal space. We apply an artificial electric field to the lattice and introduce a slow timescale to the flow, given by Bloch oscillations. Despite the dispersion and dissipation in our system, which desynchronize the Wannier–Stark ladder states, we were able to directly observe coherent oscillations facilitated by the fast gain. Additionally, we quenched a steady state of a coupled system onto an uncoupled one, which revealed coherent interactions between the decaying modes. These coherent dynamics resulted from the liquid state of light, which rapidly suppressed fluctuations at the shortest timescale of the system. This platform enriches our understanding of collective dynamics in the non-perturbative regime and improves our ability to control and generate coherent, multi-frequency sources.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIKOPOLTSEV, Alexander, Ina HECKELMANN, Mathieu BERTRAND, Mattias BECK, Giacomo SCALARI, Oded ZILBERBERG, Jérôme FAIST, 2025. Collective quench dynamics of active photonic lattices in synthetic dimensions. In: Nature Physics. Springer. ISSN 1745-2473. eISSN 1745-2481. Verfügbar unter: doi: 10.1038/s41567-025-02880-2BibTex
@article{Dikopoltsev2025-05-01Colle-73330, title={Collective quench dynamics of active photonic lattices in synthetic dimensions}, year={2025}, doi={10.1038/s41567-025-02880-2}, issn={1745-2473}, journal={Nature Physics}, author={Dikopoltsev, Alexander and Heckelmann, Ina and Bertrand, Mathieu and Beck, Mattias and Scalari, Giacomo and Zilberberg, Oded and Faist, Jérôme} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73330"> <dc:contributor>Beck, Mattias</dc:contributor> <dc:creator>Zilberberg, Oded</dc:creator> <dc:creator>Beck, Mattias</dc:creator> <dc:contributor>Zilberberg, Oded</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73330"/> <dc:contributor>Heckelmann, Ina</dc:contributor> <dcterms:issued>2025-05-01</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-14T10:08:23Z</dcterms:available> <dc:creator>Faist, Jérôme</dc:creator> <dc:creator>Heckelmann, Ina</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Scalari, Giacomo</dc:creator> <dcterms:title>Collective quench dynamics of active photonic lattices in synthetic dimensions</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract>Photonic emulators have enabled the study of many solid-state and quantum optics phenomena, such as Anderson localization, topological insulators and non-Hermitian dynamics. Current photonic emulators are generally limited to bosonic behaviour with local interactions, but the use of synthetic dimensions offers a pathway to overcome this constraint. Here we investigate the flow of liquid light in modulated fast-gain ring lasers, and we establish a platform for emulating quench dynamics within a synthetic photonic lattice with equal densities across the reciprocal space. We apply an artificial electric field to the lattice and introduce a slow timescale to the flow, given by Bloch oscillations. Despite the dispersion and dissipation in our system, which desynchronize the Wannier–Stark ladder states, we were able to directly observe coherent oscillations facilitated by the fast gain. Additionally, we quenched a steady state of a coupled system onto an uncoupled one, which revealed coherent interactions between the decaying modes. These coherent dynamics resulted from the liquid state of light, which rapidly suppressed fluctuations at the shortest timescale of the system. This platform enriches our understanding of collective dynamics in the non-perturbative regime and improves our ability to control and generate coherent, multi-frequency sources.</dcterms:abstract> <dc:creator>Dikopoltsev, Alexander</dc:creator> <dc:contributor>Bertrand, Mathieu</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Bertrand, Mathieu</dc:creator> <dc:contributor>Scalari, Giacomo</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Dikopoltsev, Alexander</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Faist, Jérôme</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-14T10:08:23Z</dc:date> </rdf:Description> </rdf:RDF>