Publikation:

Collective quench dynamics of active photonic lattices in synthetic dimensions

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Autor:innen

Dikopoltsev, Alexander
Heckelmann, Ina
Bertrand, Mathieu
Beck, Mattias
Scalari, Giacomo
Faist, Jérôme

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 101070700
Swiss National Science Foundation: 212735

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Nature Physics. Springer. ISSN 1745-2473. eISSN 1745-2481. Verfügbar unter: doi: 10.1038/s41567-025-02880-2

Zusammenfassung

Photonic emulators have enabled the study of many solid-state and quantum optics phenomena, such as Anderson localization, topological insulators and non-Hermitian dynamics. Current photonic emulators are generally limited to bosonic behaviour with local interactions, but the use of synthetic dimensions offers a pathway to overcome this constraint. Here we investigate the flow of liquid light in modulated fast-gain ring lasers, and we establish a platform for emulating quench dynamics within a synthetic photonic lattice with equal densities across the reciprocal space. We apply an artificial electric field to the lattice and introduce a slow timescale to the flow, given by Bloch oscillations. Despite the dispersion and dissipation in our system, which desynchronize the Wannier–Stark ladder states, we were able to directly observe coherent oscillations facilitated by the fast gain. Additionally, we quenched a steady state of a coupled system onto an uncoupled one, which revealed coherent interactions between the decaying modes. These coherent dynamics resulted from the liquid state of light, which rapidly suppressed fluctuations at the shortest timescale of the system. This platform enriches our understanding of collective dynamics in the non-perturbative regime and improves our ability to control and generate coherent, multi-frequency sources.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DIKOPOLTSEV, Alexander, Ina HECKELMANN, Mathieu BERTRAND, Mattias BECK, Giacomo SCALARI, Oded ZILBERBERG, Jérôme FAIST, 2025. Collective quench dynamics of active photonic lattices in synthetic dimensions. In: Nature Physics. Springer. ISSN 1745-2473. eISSN 1745-2481. Verfügbar unter: doi: 10.1038/s41567-025-02880-2
BibTex
@article{Dikopoltsev2025-05-01Colle-73330,
  title={Collective quench dynamics of active photonic lattices in synthetic dimensions},
  year={2025},
  doi={10.1038/s41567-025-02880-2},
  issn={1745-2473},
  journal={Nature Physics},
  author={Dikopoltsev, Alexander and Heckelmann, Ina and Bertrand, Mathieu and Beck, Mattias and Scalari, Giacomo and Zilberberg, Oded and Faist, Jérôme}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73330">
    <dc:contributor>Beck, Mattias</dc:contributor>
    <dc:creator>Zilberberg, Oded</dc:creator>
    <dc:creator>Beck, Mattias</dc:creator>
    <dc:contributor>Zilberberg, Oded</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73330"/>
    <dc:contributor>Heckelmann, Ina</dc:contributor>
    <dcterms:issued>2025-05-01</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-14T10:08:23Z</dcterms:available>
    <dc:creator>Faist, Jérôme</dc:creator>
    <dc:creator>Heckelmann, Ina</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Scalari, Giacomo</dc:creator>
    <dcterms:title>Collective quench dynamics of active photonic lattices in synthetic dimensions</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract>Photonic emulators have enabled the study of many solid-state and quantum optics phenomena, such as Anderson localization, topological insulators and non-Hermitian dynamics. Current photonic emulators are generally limited to bosonic behaviour with local interactions, but the use of synthetic dimensions offers a pathway to overcome this constraint. Here we investigate the flow of liquid light in modulated fast-gain ring lasers, and we establish a platform for emulating quench dynamics within a synthetic photonic lattice with equal densities across the reciprocal space. We apply an artificial electric field to the lattice and introduce a slow timescale to the flow, given by Bloch oscillations. Despite the dispersion and dissipation in our system, which desynchronize the Wannier–Stark ladder states, we were able to directly observe coherent oscillations facilitated by the fast gain. Additionally, we quenched a steady state of a coupled system onto an uncoupled one, which revealed coherent interactions between the decaying modes. These coherent dynamics resulted from the liquid state of light, which rapidly suppressed fluctuations at the shortest timescale of the system. This platform enriches our understanding of collective dynamics in the non-perturbative regime and improves our ability to control and generate coherent, multi-frequency sources.</dcterms:abstract>
    <dc:creator>Dikopoltsev, Alexander</dc:creator>
    <dc:contributor>Bertrand, Mathieu</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Bertrand, Mathieu</dc:creator>
    <dc:contributor>Scalari, Giacomo</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Dikopoltsev, Alexander</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Faist, Jérôme</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-14T10:08:23Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen