Key read across framework components and biology based improvements
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
At the 2019 annual meeting of the European Environmental Mutagen and Genomics Society a workshop session related to the use of read across concepts in toxicology was held. The goal of this session was to provide the audience an overview of general read-across concepts. From ECHA’s read across assessment framework, the starting point is chemical similarity. There are several approaches and algorithms available for calculating chemical similarity based on molecular descriptors, distance/similarity measures and weighting schemata for specific endpoints. Therefore, algorithms that adapt themselves to the data (endpoint/s) and provide a good ability to distinguish between structural similar and not similar molecules regarding specific endpoints are needed and their use discussed. Toxico-dynamic end points are usually in the focus of read across cases. However, without appropriate attention to kinetics and metabolism such cases are unlikely to be successful. To further enhance the quality of read across cases new approach methods can be very useful. Examples based on a biological approach using plasma metabolomics in rats are given. Finally, with the availability of large data sets of structure activity relationships, in silico tools have been developed which provide hitherto undiscovered information. Automated process is now able to assess the chemical – activity space around the molecule target substance and examples are given demonstrating a high predictivity for certain endpoints of toxicity. Thus, this session provides not only current state of the art criteria for good read across, but also indicates how read-across can be further developed in the near future.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BALL, Nicholas, Judith MADDEN, Alicia PAINI, Miriam MATHEA, Andrew David PALMER, Saskia SPERBER, Thomas HARTUNG, Bennard VAN RAVENZWAAY, 2020. Key read across framework components and biology based improvements. In: Mutation Research / Genetic Toxicology and Environmental Mutagenesis. Elsevier. 2020, 853, 503172. ISSN 1383-5718. eISSN 1873-135X. Available under: doi: 10.1016/j.mrgentox.2020.503172BibTex
@article{Ball2020-05acros-50396, year={2020}, doi={10.1016/j.mrgentox.2020.503172}, title={Key read across framework components and biology based improvements}, volume={853}, issn={1383-5718}, journal={Mutation Research / Genetic Toxicology and Environmental Mutagenesis}, author={Ball, Nicholas and Madden, Judith and Paini, Alicia and Mathea, Miriam and Palmer, Andrew David and Sperber, Saskia and Hartung, Thomas and van Ravenzwaay, Bennard}, note={Article Number: 503172} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50396"> <dc:creator>Paini, Alicia</dc:creator> <dc:creator>van Ravenzwaay, Bennard</dc:creator> <dc:contributor>Mathea, Miriam</dc:contributor> <dc:contributor>Palmer, Andrew David</dc:contributor> <dcterms:title>Key read across framework components and biology based improvements</dcterms:title> <dc:contributor>van Ravenzwaay, Bennard</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-30T06:58:00Z</dc:date> <dc:creator>Madden, Judith</dc:creator> <dc:contributor>Hartung, Thomas</dc:contributor> <dc:creator>Palmer, Andrew David</dc:creator> <dc:creator>Mathea, Miriam</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:issued>2020-05</dcterms:issued> <dcterms:abstract xml:lang="eng">At the 2019 annual meeting of the European Environmental Mutagen and Genomics Society a workshop session related to the use of read across concepts in toxicology was held. The goal of this session was to provide the audience an overview of general read-across concepts. From ECHA’s read across assessment framework, the starting point is chemical similarity. There are several approaches and algorithms available for calculating chemical similarity based on molecular descriptors, distance/similarity measures and weighting schemata for specific endpoints. Therefore, algorithms that adapt themselves to the data (endpoint/s) and provide a good ability to distinguish between structural similar and not similar molecules regarding specific endpoints are needed and their use discussed. Toxico-dynamic end points are usually in the focus of read across cases. However, without appropriate attention to kinetics and metabolism such cases are unlikely to be successful. To further enhance the quality of read across cases new approach methods can be very useful. Examples based on a biological approach using plasma metabolomics in rats are given. Finally, with the availability of large data sets of structure activity relationships, in silico tools have been developed which provide hitherto undiscovered information. Automated process is now able to assess the chemical – activity space around the molecule target substance and examples are given demonstrating a high predictivity for certain endpoints of toxicity. Thus, this session provides not only current state of the art criteria for good read across, but also indicates how read-across can be further developed in the near future.</dcterms:abstract> <dc:creator>Hartung, Thomas</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50396"/> <dc:creator>Ball, Nicholas</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Sperber, Saskia</dc:creator> <dc:contributor>Sperber, Saskia</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-30T06:58:00Z</dcterms:available> <dc:contributor>Paini, Alicia</dc:contributor> <dc:contributor>Madden, Judith</dc:contributor> <dc:contributor>Ball, Nicholas</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>