Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method

Lade...
Vorschaubild
Dateien
Banholzer_2-xd965ctqkqax3.pdf
Banholzer_2-xd965ctqkqax3.pdfGröße: 1.34 MBDownloads: 268
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In the present article convex multiobjective optimization problems with an arbitrary number of cost functions are considered. Since the weighted sum method has some deficiencies when it comes to approximating the Pareto front equidistantly, the Euclidean reference point method is investigated. However, for this method it is not clear how to choose reference points, i.e., the parameters in the scalarization function, guaranteeing a complete approximation of the Pareto front in the case of more than two cost functions. It is shown that by hierarchically solving subproblems of the original problem, it is possible to get a characterization of these reference points which is also numerically applicable independent of the number of cost functions. The resulting algorithm can thus be used for an arbitrary number of cost functions, which is shown in numerical tests for up to four cost functions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Convex multiobjective optimization, Pareto front, weighted sum method, Euclidean reference point method, hierarchical algorithm
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BANHOLZER, Stefan, Stefan VOLKWEIN, 2019. Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method
BibTex
@unpublished{Banholzer2019Hiera-46601,
  year={2019},
  title={Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method},
  author={Banholzer, Stefan and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46601">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In the present article convex multiobjective optimization problems with an arbitrary number of cost functions are considered. Since the weighted sum method has some deficiencies when it comes to approximating the Pareto front equidistantly, the Euclidean reference point method is investigated. However, for this method it is not clear how to choose reference points, i.e., the parameters in the scalarization function, guaranteeing a complete approximation of the Pareto front in the case of more than two cost functions. It is shown that by hierarchically solving subproblems of the original problem, it is possible to get a characterization of these reference points which is also numerically applicable independent of the number of cost functions. The resulting algorithm can thus be used for an arbitrary number of cost functions, which is shown in numerical tests for up to four cost functions.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:creator>Banholzer, Stefan</dc:creator>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/>
    <dc:contributor>Banholzer, Stefan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dcterms:available>
    <dcterms:title>Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/>
    <dcterms:issued>2019</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46601"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen