Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the present article convex multiobjective optimization problems with an arbitrary number of cost functions are considered. Since the weighted sum method has some deficiencies when it comes to approximating the Pareto front equidistantly, the Euclidean reference point method is investigated. However, for this method it is not clear how to choose reference points, i.e., the parameters in the scalarization function, guaranteeing a complete approximation of the Pareto front in the case of more than two cost functions. It is shown that by hierarchically solving subproblems of the original problem, it is possible to get a characterization of these reference points which is also numerically applicable independent of the number of cost functions. The resulting algorithm can thus be used for an arbitrary number of cost functions, which is shown in numerical tests for up to four cost functions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BANHOLZER, Stefan, Stefan VOLKWEIN, 2019. Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point MethodBibTex
@unpublished{Banholzer2019Hiera-46601, year={2019}, title={Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method}, author={Banholzer, Stefan and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46601"> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">In the present article convex multiobjective optimization problems with an arbitrary number of cost functions are considered. Since the weighted sum method has some deficiencies when it comes to approximating the Pareto front equidistantly, the Euclidean reference point method is investigated. However, for this method it is not clear how to choose reference points, i.e., the parameters in the scalarization function, guaranteeing a complete approximation of the Pareto front in the case of more than two cost functions. It is shown that by hierarchically solving subproblems of the original problem, it is possible to get a characterization of these reference points which is also numerically applicable independent of the number of cost functions. The resulting algorithm can thus be used for an arbitrary number of cost functions, which is shown in numerical tests for up to four cost functions.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:creator>Banholzer, Stefan</dc:creator> <dc:creator>Volkwein, Stefan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/> <dc:contributor>Banholzer, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dcterms:available> <dcterms:title>Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/> <dcterms:issued>2019</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46601"/> </rdf:Description> </rdf:RDF>