Publikation:

G-Rap: interactive text synthesis using recurrent neural network suggestions

Lade...
Vorschaubild

Dateien

Schlegel_2-xeqgxbhdkp799.pdf
Schlegel_2-xeqgxbhdkp799.pdfGröße: 269.51 KBDownloads: 362

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ESANN 2018 proceedings. 2018

Zusammenfassung

Finding the best neural network configuration for a given goal can be challenging, especially when it is not possible to assess the output quality of a network automatically. We present G-Rap, an interactive interface based on Visual Analytics principles for comparing outputs of multiple RNNs for the same training data. G-Rap enables an iterative result generation process that allows a user to evaluate the outputs with contextual statistics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Deep Learning, Recurrent Neural Networks, Interactive Machine Learning

Konferenz

European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : ESANN 2018, 25. Apr. 2018 - 27. Apr. 2018, Brügge, Belgien
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SCHLEGEL, Udo, Eren CAKMAK, Juri F. BUCHMÜLLER, Daniel A. KEIM, 2018. G-Rap: interactive text synthesis using recurrent neural network suggestions. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : ESANN 2018. Brügge, Belgien, 25. Apr. 2018 - 27. Apr. 2018. In: ESANN 2018 proceedings. 2018
BibTex
@inproceedings{Schlegel2018inter-42292,
  year={2018},
  title={G-Rap: interactive text synthesis using recurrent neural network suggestions},
  booktitle={ESANN 2018 proceedings},
  author={Schlegel, Udo and Cakmak, Eren and Buchmüller, Juri F. and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42292">
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42292/3/Schlegel_2-xeqgxbhdkp799.pdf"/>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42292/3/Schlegel_2-xeqgxbhdkp799.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract xml:lang="eng">Finding the best neural network configuration for a given goal can be challenging, especially when it is not possible to assess the output quality of a network automatically. We present G-Rap, an interactive interface based on Visual Analytics principles for comparing outputs of multiple RNNs for the same training data. G-Rap enables an iterative result generation process that allows a user to evaluate the outputs with contextual statistics.</dcterms:abstract>
    <dcterms:title>G-Rap: interactive text synthesis using recurrent neural network suggestions</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:34:10Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Cakmak, Eren</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42292"/>
    <dc:creator>Cakmak, Eren</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-09T13:34:10Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen