Publikation:

Pressure condition for lattice Boltzmann methods on domains with curved boundaries

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2010

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computers & Mathematics with Applications. Elsevier. 2010, 59(7), pp. 2168-2177. ISSN 0898-1221. eISSN 1873-7668. Available under: doi: 10.1016/j.camwa.2009.08.074

Zusammenfassung

We propose a lattice Boltzmann algorithm for an average pressure boundary condition at outlets in pipe flow systems. The advantage of this boundary condition is that only the average pressure is used to recover the non-trivial flow fields. The asymptotic analysis shows that this algorithm works for general curved boundaries and renders a second order accurate velocity and a first order accurate pressure approximation of the incompressible Navier–Stokes solution. Here, we verify the accuracy by numerical simulations of a Poiseuille flow and a less symmetric flow with non-trivial pressure field in channels inclined with arbitrary angle, and flows in a pipe with three outlets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Outflow condition; Pressure condition; Curved boundary; Lattice Boltzmann method

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690YANG, Zhaoxia, 2010. Pressure condition for lattice Boltzmann methods on domains with curved boundaries. In: Computers & Mathematics with Applications. Elsevier. 2010, 59(7), pp. 2168-2177. ISSN 0898-1221. eISSN 1873-7668. Available under: doi: 10.1016/j.camwa.2009.08.074
BibTex
@article{Yang2010-04Press-51587,
  year={2010},
  doi={10.1016/j.camwa.2009.08.074},
  title={Pressure condition for lattice Boltzmann methods on domains with curved boundaries},
  number={7},
  volume={59},
  issn={0898-1221},
  journal={Computers & Mathematics with Applications},
  pages={2168--2177},
  author={Yang, Zhaoxia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51587">
    <dcterms:title>Pressure condition for lattice Boltzmann methods on domains with curved boundaries</dcterms:title>
    <dc:creator>Yang, Zhaoxia</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-30T12:28:31Z</dcterms:available>
    <dc:contributor>Yang, Zhaoxia</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51587"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-30T12:28:31Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2010-04</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We propose a lattice Boltzmann algorithm for an average pressure boundary condition at outlets in pipe flow systems. The advantage of this boundary condition is that only the average pressure is used to recover the non-trivial flow fields. The asymptotic analysis shows that this algorithm works for general curved boundaries and renders a second order accurate velocity and a first order accurate pressure approximation of the incompressible Navier–Stokes solution. Here, we verify the accuracy by numerical simulations of a Poiseuille flow and a less symmetric flow with non-trivial pressure field in channels inclined with arbitrary angle, and flows in a pipe with three outlets.</dcterms:abstract>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen