Pressure condition for lattice Boltzmann methods on domains with curved boundaries

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2010
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Computers & Mathematics with Applications. Elsevier. 2010, 59(7), pp. 2168-2177. ISSN 0898-1221. eISSN 1873-7668. Available under: doi: 10.1016/j.camwa.2009.08.074
Zusammenfassung

We propose a lattice Boltzmann algorithm for an average pressure boundary condition at outlets in pipe flow systems. The advantage of this boundary condition is that only the average pressure is used to recover the non-trivial flow fields. The asymptotic analysis shows that this algorithm works for general curved boundaries and renders a second order accurate velocity and a first order accurate pressure approximation of the incompressible Navier–Stokes solution. Here, we verify the accuracy by numerical simulations of a Poiseuille flow and a less symmetric flow with non-trivial pressure field in channels inclined with arbitrary angle, and flows in a pipe with three outlets.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Outflow condition; Pressure condition; Curved boundary; Lattice Boltzmann method
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690YANG, Zhaoxia, 2010. Pressure condition for lattice Boltzmann methods on domains with curved boundaries. In: Computers & Mathematics with Applications. Elsevier. 2010, 59(7), pp. 2168-2177. ISSN 0898-1221. eISSN 1873-7668. Available under: doi: 10.1016/j.camwa.2009.08.074
BibTex
@article{Yang2010-04Press-51587,
  year={2010},
  doi={10.1016/j.camwa.2009.08.074},
  title={Pressure condition for lattice Boltzmann methods on domains with curved boundaries},
  number={7},
  volume={59},
  issn={0898-1221},
  journal={Computers & Mathematics with Applications},
  pages={2168--2177},
  author={Yang, Zhaoxia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51587">
    <dcterms:title>Pressure condition for lattice Boltzmann methods on domains with curved boundaries</dcterms:title>
    <dc:creator>Yang, Zhaoxia</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-30T12:28:31Z</dcterms:available>
    <dc:contributor>Yang, Zhaoxia</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51587"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-30T12:28:31Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2010-04</dcterms:issued>
    <dcterms:abstract xml:lang="eng">We propose a lattice Boltzmann algorithm for an average pressure boundary condition at outlets in pipe flow systems. The advantage of this boundary condition is that only the average pressure is used to recover the non-trivial flow fields. The asymptotic analysis shows that this algorithm works for general curved boundaries and renders a second order accurate velocity and a first order accurate pressure approximation of the incompressible Navier–Stokes solution. Here, we verify the accuracy by numerical simulations of a Poiseuille flow and a less symmetric flow with non-trivial pressure field in channels inclined with arbitrary angle, and flows in a pipe with three outlets.</dcterms:abstract>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen