Concatenated k-Path Covers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Given a directed graph G(V,E), a k-(Shortest) Path Cover is a subset C of the nodes V such that every simple (or shortest) path in G consisting of k nodes contains at least one node from C. In this paper, we extend the notion of k-Path Covers such that the objects to be covered don't have to be single paths but can be concatenations of up to p simple (or shortest) paths. For the generalized problem of computing concatenated k-(Shortest) Path Covers, we present theoretical results regarding the VC-dimension of the concatenated path set in dependency of p as well as (approximation) algorithms. Subsequently, we study interesting special cases of concatenated k-Path Covers, in particular, covers for piecewise shortest paths, round tours and trees. For those, we show how the pruning algorithm for k-Path Cover computation can be abstracted and modified in order to also solve concatenated k-Path Cover problems. An extensive experimental study on different graph types proves the applicability and efficiency of our approaches.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BECK, Moritz, Kam-Yiu LAM, Joseph Kee Yin NG, Sabine STORANDT, Chun Jiang ZHU, 2019. Concatenated k-Path Covers. The Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). San Diego, California, 7. Jan. 2019 - 8. Jan. 2019. In: KOBOUROV, Stephen, ed., Henning MEYERHENKE, ed.. 2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). Philadelphia, PA: SIAM, 2019, pp. 81-91. ISBN 978-1-61197-549-9. Available under: doi: 10.1137/1.9781611975499.7BibTex
@inproceedings{Beck2019-01-02Conca-44521, year={2019}, doi={10.1137/1.9781611975499.7}, title={Concatenated k-Path Covers}, isbn={978-1-61197-549-9}, publisher={SIAM}, address={Philadelphia, PA}, booktitle={2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX)}, pages={81--91}, editor={Kobourov, Stephen and Meyerhenke, Henning}, author={Beck, Moritz and Lam, Kam-Yiu and Ng, Joseph Kee Yin and Storandt, Sabine and Zhu, Chun Jiang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44521"> <dc:contributor>Lam, Kam-Yiu</dc:contributor> <dc:creator>Storandt, Sabine</dc:creator> <dc:creator>Beck, Moritz</dc:creator> <dc:creator>Lam, Kam-Yiu</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2019-01-02</dcterms:issued> <dc:contributor>Ng, Joseph Kee Yin</dc:contributor> <dc:contributor>Storandt, Sabine</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:18:05Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44521"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:18:05Z</dc:date> <dc:creator>Ng, Joseph Kee Yin</dc:creator> <dc:creator>Zhu, Chun Jiang</dc:creator> <dc:contributor>Zhu, Chun Jiang</dc:contributor> <dcterms:abstract xml:lang="eng">Given a directed graph G(V,E), a k-(Shortest) Path Cover is a subset C of the nodes V such that every simple (or shortest) path in G consisting of k nodes contains at least one node from C. In this paper, we extend the notion of k-Path Covers such that the objects to be covered don't have to be single paths but can be concatenations of up to p simple (or shortest) paths. For the generalized problem of computing concatenated k-(Shortest) Path Covers, we present theoretical results regarding the VC-dimension of the concatenated path set in dependency of p as well as (approximation) algorithms. Subsequently, we study interesting special cases of concatenated k-Path Covers, in particular, covers for piecewise shortest paths, round tours and trees. For those, we show how the pruning algorithm for k-Path Cover computation can be abstracted and modified in order to also solve concatenated k-Path Cover problems. An extensive experimental study on different graph types proves the applicability and efficiency of our approaches.</dcterms:abstract> <dcterms:title>Concatenated k-Path Covers</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Beck, Moritz</dc:contributor> </rdf:Description> </rdf:RDF>