Concatenated k-Path Covers

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Lam, Kam-Yiu
Ng, Joseph Kee Yin
Zhu, Chun Jiang
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
KOBOUROV, Stephen, ed., Henning MEYERHENKE, ed.. 2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). Philadelphia, PA: SIAM, 2019, pp. 81-91. ISBN 978-1-61197-549-9. Available under: doi: 10.1137/1.9781611975499.7
Zusammenfassung

Given a directed graph G(V,E), a k-(Shortest) Path Cover is a subset C of the nodes V such that every simple (or shortest) path in G consisting of k nodes contains at least one node from C. In this paper, we extend the notion of k-Path Covers such that the objects to be covered don't have to be single paths but can be concatenations of up to p simple (or shortest) paths. For the generalized problem of computing concatenated k-(Shortest) Path Covers, we present theoretical results regarding the VC-dimension of the concatenated path set in dependency of p as well as (approximation) algorithms. Subsequently, we study interesting special cases of concatenated k-Path Covers, in particular, covers for piecewise shortest paths, round tours and trees. For those, we show how the pruning algorithm for k-Path Cover computation can be abstracted and modified in order to also solve concatenated k-Path Cover problems. An extensive experimental study on different graph types proves the applicability and efficiency of our approaches.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
The Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX), 7. Jan. 2019 - 8. Jan. 2019, San Diego, California
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BECK, Moritz, Kam-Yiu LAM, Joseph Kee Yin NG, Sabine STORANDT, Chun Jiang ZHU, 2019. Concatenated k-Path Covers. The Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). San Diego, California, 7. Jan. 2019 - 8. Jan. 2019. In: KOBOUROV, Stephen, ed., Henning MEYERHENKE, ed.. 2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). Philadelphia, PA: SIAM, 2019, pp. 81-91. ISBN 978-1-61197-549-9. Available under: doi: 10.1137/1.9781611975499.7
BibTex
@inproceedings{Beck2019-01-02Conca-44521,
  year={2019},
  doi={10.1137/1.9781611975499.7},
  title={Concatenated k-Path Covers},
  isbn={978-1-61197-549-9},
  publisher={SIAM},
  address={Philadelphia, PA},
  booktitle={2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX)},
  pages={81--91},
  editor={Kobourov, Stephen and Meyerhenke, Henning},
  author={Beck, Moritz and Lam, Kam-Yiu and Ng, Joseph Kee Yin and Storandt, Sabine and Zhu, Chun Jiang}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44521">
    <dc:contributor>Lam, Kam-Yiu</dc:contributor>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dc:creator>Beck, Moritz</dc:creator>
    <dc:creator>Lam, Kam-Yiu</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2019-01-02</dcterms:issued>
    <dc:contributor>Ng, Joseph Kee Yin</dc:contributor>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:18:05Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44521"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T15:18:05Z</dc:date>
    <dc:creator>Ng, Joseph Kee Yin</dc:creator>
    <dc:creator>Zhu, Chun Jiang</dc:creator>
    <dc:contributor>Zhu, Chun Jiang</dc:contributor>
    <dcterms:abstract xml:lang="eng">Given a directed graph G(V,E), a k-(Shortest) Path Cover is a subset C of the nodes V such that every simple (or shortest) path in G consisting of k nodes contains at least one node from C. In this paper, we extend the notion of k-Path Covers such that the objects to be covered don't have to be single paths but can be concatenations of up to p simple (or shortest) paths. For the generalized problem of computing concatenated k-(Shortest) Path Covers, we present theoretical results regarding the VC-dimension of the concatenated path set in dependency of p as well as (approximation) algorithms. Subsequently, we study interesting special cases of concatenated k-Path Covers, in particular, covers for piecewise shortest paths, round tours and trees. For those, we show how the pruning algorithm for k-Path Cover computation can be abstracted and modified in order to also solve concatenated k-Path Cover problems. An extensive experimental study on different graph types proves the applicability and efficiency of our approaches.</dcterms:abstract>
    <dcterms:title>Concatenated k-Path Covers</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Beck, Moritz</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen