On Representations of Intended Structures in Foundational Theories
Lade...
Dateien
Datum
2022
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 648276
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Philosophical Logic. Springer. 2022, 51(2), pp. 283-296. ISSN 0022-3611. eISSN 1573-0433. Available under: doi: 10.1007/s10992-021-09628-2
Zusammenfassung
Often philosophers, logicians, and mathematicians employ a notion of intended structure when talking about a branch of mathematics. In addition, we know that there are foundational mathematical theories that can find representatives for the objects of informal mathematics. In this paper, we examine how faithfully foundational theories can represent intended structures, and show that this question is closely linked to the decidability of the theory of the intended structure. We argue that this sheds light on the trade-off between expressive power and meta-theoretic properties when comparing first-order and second-order logic.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
100 Philosophie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BARTON, Neil, Moritz MÜLLER, Mihai PRUNESCU, 2022. On Representations of Intended Structures in Foundational Theories. In: Journal of Philosophical Logic. Springer. 2022, 51(2), pp. 283-296. ISSN 0022-3611. eISSN 1573-0433. Available under: doi: 10.1007/s10992-021-09628-2BibTex
@article{Barton2022-04Repre-54556, year={2022}, doi={10.1007/s10992-021-09628-2}, title={On Representations of Intended Structures in Foundational Theories}, number={2}, volume={51}, issn={0022-3611}, journal={Journal of Philosophical Logic}, pages={283--296}, author={Barton, Neil and Müller, Moritz and Prunescu, Mihai} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54556"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-11T10:53:05Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54556/1/Barton_2-xhioppk93fb62.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Müller, Moritz</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Prunescu, Mihai</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54556"/> <dc:creator>Prunescu, Mihai</dc:creator> <dc:creator>Barton, Neil</dc:creator> <dcterms:title>On Representations of Intended Structures in Foundational Theories</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-11T10:53:05Z</dcterms:available> <dcterms:issued>2022-04</dcterms:issued> <dcterms:abstract xml:lang="eng">Often philosophers, logicians, and mathematicians employ a notion of intended structure when talking about a branch of mathematics. In addition, we know that there are foundational mathematical theories that can find representatives for the objects of informal mathematics. In this paper, we examine how faithfully foundational theories can represent intended structures, and show that this question is closely linked to the decidability of the theory of the intended structure. We argue that this sheds light on the trade-off between expressive power and meta-theoretic properties when comparing first-order and second-order logic.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54556/1/Barton_2-xhioppk93fb62.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Müller, Moritz</dc:contributor> <dc:contributor>Barton, Neil</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja