Handling deviating control values in concentration-response curves
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAPPENBERG, Franziska, Tim BRECKLINGHAUS, Wiebke ALBRECHT, Jonathan BLUM, Carola VAN DER WURP, Marcel LEIST, Jan G. HENGSTLER, Jörg RAHNENFÜHRER, 2020. Handling deviating control values in concentration-response curves. In: Archives of Toxicology. Springer. 2020, 94(11), pp. 3787-3798. ISSN 0370-8497. eISSN 1432-0738. Available under: doi: 10.1007/s00204-020-02913-0BibTex
@article{Kappenberg2020Handl-51094, year={2020}, doi={10.1007/s00204-020-02913-0}, title={Handling deviating control values in concentration-response curves}, number={11}, volume={94}, issn={0370-8497}, journal={Archives of Toxicology}, pages={3787--3798}, author={Kappenberg, Franziska and Brecklinghaus, Tim and Albrecht, Wiebke and Blum, Jonathan and van der Wurp, Carola and Leist, Marcel and Hengstler, Jan G. and Rahnenführer, Jörg} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51094"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Brecklinghaus, Tim</dc:creator> <dc:creator>Albrecht, Wiebke</dc:creator> <dc:creator>Hengstler, Jan G.</dc:creator> <dc:creator>Leist, Marcel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rahnenführer, Jörg</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51094/1/Kappenberg_2-xjlhniz3vmf90.pdf"/> <dcterms:issued>2020</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Brecklinghaus, Tim</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Rahnenführer, Jörg</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T09:44:47Z</dcterms:available> <dc:contributor>Blum, Jonathan</dc:contributor> <dc:contributor>van der Wurp, Carola</dc:contributor> <dc:contributor>Leist, Marcel</dc:contributor> <dc:creator>Blum, Jonathan</dc:creator> <dc:contributor>Hengstler, Jan G.</dc:contributor> <dcterms:title>Handling deviating control values in concentration-response curves</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Kappenberg, Franziska</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T09:44:47Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51094"/> <dc:creator>van der Wurp, Carola</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51094/1/Kappenberg_2-xjlhniz3vmf90.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Kappenberg, Franziska</dc:contributor> <dc:contributor>Albrecht, Wiebke</dc:contributor> <dcterms:abstract xml:lang="eng">In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.</dcterms:abstract> </rdf:Description> </rdf:RDF>