Publikation:

Handling deviating control values in concentration-response curves

Lade...
Vorschaubild

Dateien

Kappenberg_2-xjlhniz3vmf90.pdf
Kappenberg_2-xjlhniz3vmf90.pdfGröße: 3.42 MBDownloads: 318

Datum

2020

Autor:innen

Kappenberg, Franziska
Brecklinghaus, Tim
Albrecht, Wiebke
van der Wurp, Carola
Hengstler, Jan G.
Rahnenführer, Jörg

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Archives of Toxicology. Springer. 2020, 94(11), pp. 3787-3798. ISSN 0370-8497. eISSN 1432-0738. Available under: doi: 10.1007/s00204-020-02913-0

Zusammenfassung

In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Concentration-response curve, Dose-response curve, Viability assay, Deviating controls, 4pLL model, Simulation study

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAPPENBERG, Franziska, Tim BRECKLINGHAUS, Wiebke ALBRECHT, Jonathan BLUM, Carola VAN DER WURP, Marcel LEIST, Jan G. HENGSTLER, Jörg RAHNENFÜHRER, 2020. Handling deviating control values in concentration-response curves. In: Archives of Toxicology. Springer. 2020, 94(11), pp. 3787-3798. ISSN 0370-8497. eISSN 1432-0738. Available under: doi: 10.1007/s00204-020-02913-0
BibTex
@article{Kappenberg2020Handl-51094,
  year={2020},
  doi={10.1007/s00204-020-02913-0},
  title={Handling deviating control values in concentration-response curves},
  number={11},
  volume={94},
  issn={0370-8497},
  journal={Archives of Toxicology},
  pages={3787--3798},
  author={Kappenberg, Franziska and Brecklinghaus, Tim and Albrecht, Wiebke and Blum, Jonathan and van der Wurp, Carola and Leist, Marcel and Hengstler, Jan G. and Rahnenführer, Jörg}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51094">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Brecklinghaus, Tim</dc:creator>
    <dc:creator>Albrecht, Wiebke</dc:creator>
    <dc:creator>Hengstler, Jan G.</dc:creator>
    <dc:creator>Leist, Marcel</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rahnenführer, Jörg</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51094/1/Kappenberg_2-xjlhniz3vmf90.pdf"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Brecklinghaus, Tim</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Rahnenführer, Jörg</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T09:44:47Z</dcterms:available>
    <dc:contributor>Blum, Jonathan</dc:contributor>
    <dc:contributor>van der Wurp, Carola</dc:contributor>
    <dc:contributor>Leist, Marcel</dc:contributor>
    <dc:creator>Blum, Jonathan</dc:creator>
    <dc:contributor>Hengstler, Jan G.</dc:contributor>
    <dcterms:title>Handling deviating control values in concentration-response curves</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Kappenberg, Franziska</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T09:44:47Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51094"/>
    <dc:creator>van der Wurp, Carola</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51094/1/Kappenberg_2-xjlhniz3vmf90.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Kappenberg, Franziska</dc:contributor>
    <dc:contributor>Albrecht, Wiebke</dc:contributor>
    <dcterms:abstract xml:lang="eng">In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen