Limits of random walks with distributionally robust transition probabilities
Lade...
Dateien
Datum
2021
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Electronic Communications in Probability. Institute of Mathematical Statistics (IMS). 2021, 26, 28. eISSN 1083-589X. Available under: doi: 10.1214/21-ECP393
Zusammenfassung
We consider a nonlinear random walk which, in each time step, is free to choose its own transition probability within a neighborhood (w.r.t. Wasserstein distance) of the transition probability of a fixed Lévy process. In analogy to the classical framework we show that, when passing from discrete to continuous time via a scaling limit, this nonlinear random walk gives rise to a nonlinear semigroup. We explicitly compute the generator of this semigroup and corresponding PDE as a perturbation of the generator of the initial Lévy process.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
nonlinear Lévy processes; Wasserstein distance; scaling limit
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BARTL, Daniel, Stephan ECKSTEIN, Michael KUPPER, 2021. Limits of random walks with distributionally robust transition probabilities. In: Electronic Communications in Probability. Institute of Mathematical Statistics (IMS). 2021, 26, 28. eISSN 1083-589X. Available under: doi: 10.1214/21-ECP393BibTex
@article{Bartl2021Limit-53981, year={2021}, doi={10.1214/21-ECP393}, title={Limits of random walks with distributionally robust transition probabilities}, volume={26}, journal={Electronic Communications in Probability}, author={Bartl, Daniel and Eckstein, Stephan and Kupper, Michael}, note={Article Number: 28} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53981"> <dc:contributor>Bartl, Daniel</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53981/1/Bartl_2-xruc5joqc0wy2.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53981"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-16T07:54:22Z</dc:date> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53981/1/Bartl_2-xruc5joqc0wy2.pdf"/> <dcterms:title>Limits of random walks with distributionally robust transition probabilities</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Eckstein, Stephan</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Bartl, Daniel</dc:creator> <dc:creator>Kupper, Michael</dc:creator> <dc:creator>Eckstein, Stephan</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">We consider a nonlinear random walk which, in each time step, is free to choose its own transition probability within a neighborhood (w.r.t. Wasserstein distance) of the transition probability of a fixed Lévy process. In analogy to the classical framework we show that, when passing from discrete to continuous time via a scaling limit, this nonlinear random walk gives rise to a nonlinear semigroup. We explicitly compute the generator of this semigroup and corresponding PDE as a perturbation of the generator of the initial Lévy process.</dcterms:abstract> <dc:contributor>Kupper, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-16T07:54:22Z</dcterms:available> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja