Robust visualization of trajectory data
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The analysis of movement trajectories plays a central role in many application areas, such as traffic management, sports analysis, and collective behavior research, where large and complex trajectory data sets are routinely collected these days. While automated analysis methods are available to extract characteristics of trajectories such as statistics on the geometry, movement patterns, and locations that might be associated with important events, human inspection is still required to interpret the results, derive parameters for the analysis, compare trajectories and patterns, and to further interpret the impact factors that influence trajectory shapes and their underlying movement processes. Every step in the acquisition and analysis pipeline might introduce artifacts or alterate trajectory features, which might bias the human interpretation or confound the automated analysis. Thus, visualization methods as well as the visualizations themselves need to take into account the corresponding factors in order to allow sound interpretation without adding or removing important trajectory features or putting a large strain on the analyst. In this paper, we provide an overview of the challenges arising in robust trajectory visualization tasks. We then discuss several methods that contribute to improved visualizations. In particular, we present practical algorithms for simplifying trajectory sets that take semantic and uncertainty information directly into account. Furthermore, we describe a complementary approach that allows to visualize the uncertainty along with the trajectories.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHANG, Ying, Karsten KLEIN, Oliver DEUSSEN, Theodor GUTSCHLAG, Sabine STORANDT, 2022. Robust visualization of trajectory data. In: it - Information Technology. De Gruyter Oldenbourg. 2022, 64(4-5), pp. 181-191. ISSN 1611-2776. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0036BibTex
@article{Zhang2022Robus-58599, year={2022}, doi={10.1515/itit-2022-0036}, title={Robust visualization of trajectory data}, number={4-5}, volume={64}, issn={1611-2776}, journal={it - Information Technology}, pages={181--191}, author={Zhang, Ying and Klein, Karsten and Deussen, Oliver and Gutschlag, Theodor and Storandt, Sabine} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58599"> <dc:contributor>Gutschlag, Theodor</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Storandt, Sabine</dc:contributor> <dc:creator>Zhang, Ying</dc:creator> <dcterms:issued>2022</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58599/1/Zhang_2-xsckyx8cola85.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-13T07:27:14Z</dcterms:available> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Zhang, Ying</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Klein, Karsten</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-13T07:27:14Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">The analysis of movement trajectories plays a central role in many application areas, such as traffic management, sports analysis, and collective behavior research, where large and complex trajectory data sets are routinely collected these days. While automated analysis methods are available to extract characteristics of trajectories such as statistics on the geometry, movement patterns, and locations that might be associated with important events, human inspection is still required to interpret the results, derive parameters for the analysis, compare trajectories and patterns, and to further interpret the impact factors that influence trajectory shapes and their underlying movement processes. Every step in the acquisition and analysis pipeline might introduce artifacts or alterate trajectory features, which might bias the human interpretation or confound the automated analysis. Thus, visualization methods as well as the visualizations themselves need to take into account the corresponding factors in order to allow sound interpretation without adding or removing important trajectory features or putting a large strain on the analyst. In this paper, we provide an overview of the challenges arising in robust trajectory visualization tasks. We then discuss several methods that contribute to improved visualizations. In particular, we present practical algorithms for simplifying trajectory sets that take semantic and uncertainty information directly into account. Furthermore, we describe a complementary approach that allows to visualize the uncertainty along with the trajectories.</dcterms:abstract> <dc:creator>Storandt, Sabine</dc:creator> <dcterms:title>Robust visualization of trajectory data</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58599/1/Zhang_2-xsckyx8cola85.pdf"/> <dc:creator>Gutschlag, Theodor</dc:creator> <dc:contributor>Klein, Karsten</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58599"/> </rdf:Description> </rdf:RDF>