Robust visualization of trajectory data

Lade...
Vorschaubild
Dateien
Zhang_2-xsckyx8cola85.pdf
Zhang_2-xsckyx8cola85.pdfGröße: 1.87 MBDownloads: 56
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

The analysis of movement trajectories plays a central role in many application areas, such as traffic management, sports analysis, and collective behavior research, where large and complex trajectory data sets are routinely collected these days. While automated analysis methods are available to extract characteristics of trajectories such as statistics on the geometry, movement patterns, and locations that might be associated with important events, human inspection is still required to interpret the results, derive parameters for the analysis, compare trajectories and patterns, and to further interpret the impact factors that influence trajectory shapes and their underlying movement processes. Every step in the acquisition and analysis pipeline might introduce artifacts or alterate trajectory features, which might bias the human interpretation or confound the automated analysis. Thus, visualization methods as well as the visualizations themselves need to take into account the corresponding factors in order to allow sound interpretation without adding or removing important trajectory features or putting a large strain on the analyst. In this paper, we provide an overview of the challenges arising in robust trajectory visualization tasks. We then discuss several methods that contribute to improved visualizations. In particular, we present practical algorithms for simplifying trajectory sets that take semantic and uncertainty information directly into account. Furthermore, we describe a complementary approach that allows to visualize the uncertainty along with the trajectories.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ZHANG, Ying, Karsten KLEIN, Oliver DEUSSEN, Theodor GUTSCHLAG, Sabine STORANDT, 2022. Robust visualization of trajectory data. In: it - Information Technology. De Gruyter Oldenbourg. 2022, 64(4-5), pp. 181-191. ISSN 1611-2776. eISSN 2196-7032. Available under: doi: 10.1515/itit-2022-0036
BibTex
@article{Zhang2022Robus-58599,
  year={2022},
  doi={10.1515/itit-2022-0036},
  title={Robust visualization of trajectory data},
  number={4-5},
  volume={64},
  issn={1611-2776},
  journal={it - Information Technology},
  pages={181--191},
  author={Zhang, Ying and Klein, Karsten and Deussen, Oliver and Gutschlag, Theodor and Storandt, Sabine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58599">
    <dc:contributor>Gutschlag, Theodor</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Storandt, Sabine</dc:contributor>
    <dc:creator>Zhang, Ying</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58599/1/Zhang_2-xsckyx8cola85.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-13T07:27:14Z</dcterms:available>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Zhang, Ying</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Klein, Karsten</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-13T07:27:14Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">The analysis of movement trajectories plays a central role in many application areas, such as traffic management, sports analysis, and collective behavior research, where large and complex trajectory data sets are routinely collected these days. While automated analysis methods are available to extract characteristics of trajectories such as statistics on the geometry, movement patterns, and locations that might be associated with important events, human inspection is still required to interpret the results, derive parameters for the analysis, compare trajectories and patterns, and to further interpret the impact factors that influence trajectory shapes and their underlying movement processes. Every step in the acquisition and analysis pipeline might introduce artifacts or alterate trajectory features, which might bias the human interpretation or confound the automated analysis. Thus, visualization methods as well as the visualizations themselves need to take into account the corresponding factors in order to allow sound interpretation without adding or removing important trajectory features or putting a large strain on the analyst. In this paper, we provide an overview of the challenges arising in robust trajectory visualization tasks. We then discuss several methods that contribute to improved visualizations. In particular, we present practical algorithms for simplifying trajectory sets that take semantic and uncertainty information directly into account. Furthermore, we describe a complementary approach that allows to visualize the uncertainty along with the trajectories.</dcterms:abstract>
    <dc:creator>Storandt, Sabine</dc:creator>
    <dcterms:title>Robust visualization of trajectory data</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58599/1/Zhang_2-xsckyx8cola85.pdf"/>
    <dc:creator>Gutschlag, Theodor</dc:creator>
    <dc:contributor>Klein, Karsten</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58599"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen