Positivity Certificates via Integral Representations

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Kozhasov, Khazhgali
Sturmfels, Bernd
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
ALUFFI, Paolo, ed., David ANDERSON, ed., Milena HERING, ed. and others. Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2. Cambridge: Cambridge University Press, 2019, pp. 84-114. ISBN 978-1-108-87785-5. Available under: doi: 10.1017/9781108877855.004
Zusammenfassung

Complete monotonicity is a strong positivity property for real-valued functions on convex cones. It is certified by the kernel of the inverse Laplace transform. We study this for negative powers of hyperbolic polynomials. Here the certificate is the Riesz kernel in Garding's integral representation. The Riesz kernel is a hypergeometric function in the coefficients of the given polynomial. For monomials in linear forms, it is a Gel'fand-Aomoto hypergeometric function, related to volumes of polytopes. We establish complete monotonicity for sufficiently negative powers of elementary symmetric functions. We also show that small negative powers of these polynomials are not completely monotone, proving one direction of a conjecture by Scott and Sokal.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KOZHASOV, Khazhgali, Mateusz MICHALEK, Bernd STURMFELS, 2019. Positivity Certificates via Integral Representations. In: ALUFFI, Paolo, ed., David ANDERSON, ed., Milena HERING, ed. and others. Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2. Cambridge: Cambridge University Press, 2019, pp. 84-114. ISBN 978-1-108-87785-5. Available under: doi: 10.1017/9781108877855.004
BibTex
@incollection{Kozhasov2019Posit-55479.2,
  year={2019},
  doi={10.1017/9781108877855.004},
  title={Positivity Certificates via Integral Representations},
  isbn={978-1-108-87785-5},
  publisher={Cambridge University Press},
  address={Cambridge},
  booktitle={Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2},
  pages={84--114},
  editor={Aluffi, Paolo and Anderson, David and Hering, Milena},
  author={Kozhasov, Khazhgali and Michalek, Mateusz and Sturmfels, Bernd}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55479.2">
    <dcterms:issued>2019</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55479.2"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T13:43:50Z</dcterms:available>
    <dc:creator>Kozhasov, Khazhgali</dc:creator>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Complete monotonicity is a strong positivity property for real-valued functions on convex cones. It is certified by the kernel of the inverse Laplace transform. We study this for negative powers of hyperbolic polynomials. Here the certificate is the Riesz kernel in Garding's integral representation. The Riesz kernel is a hypergeometric function in the coefficients of the given polynomial. For monomials in linear forms, it is a Gel'fand-Aomoto hypergeometric function, related to volumes of polytopes. We establish complete monotonicity for sufficiently negative powers of elementary symmetric functions. We also show that small negative powers of these polynomials are not completely monotone, proving one direction of a conjecture by Scott and Sokal.</dcterms:abstract>
    <dc:creator>Sturmfels, Bernd</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T13:43:50Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kozhasov, Khazhgali</dc:contributor>
    <dcterms:title>Positivity Certificates via Integral Representations</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Sturmfels, Bernd</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2022-03-28 13:38:51
2021-11-08 15:16:27
* Ausgewählte Version