Publikation:

Positivity Certificates via Integral Representations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Autor:innen

Kozhasov, Khazhgali
Sturmfels, Bernd

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

ALUFFI, Paolo, ed., David ANDERSON, ed., Milena HERING, ed. and others. Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2. Cambridge: Cambridge University Press, 2019, pp. 84-114. ISBN 978-1-108-87785-5. Available under: doi: 10.1017/9781108877855.004

Zusammenfassung

Complete monotonicity is a strong positivity property for real-valued functions on convex cones. It is certified by the kernel of the inverse Laplace transform. We study this for negative powers of hyperbolic polynomials. Here the certificate is the Riesz kernel in Garding's integral representation. The Riesz kernel is a hypergeometric function in the coefficients of the given polynomial. For monomials in linear forms, it is a Gel'fand-Aomoto hypergeometric function, related to volumes of polytopes. We establish complete monotonicity for sufficiently negative powers of elementary symmetric functions. We also show that small negative powers of these polynomials are not completely monotone, proving one direction of a conjecture by Scott and Sokal.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOZHASOV, Khazhgali, Mateusz MICHALEK, Bernd STURMFELS, 2019. Positivity Certificates via Integral Representations. In: ALUFFI, Paolo, ed., David ANDERSON, ed., Milena HERING, ed. and others. Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2. Cambridge: Cambridge University Press, 2019, pp. 84-114. ISBN 978-1-108-87785-5. Available under: doi: 10.1017/9781108877855.004
BibTex
@incollection{Kozhasov2019Posit-55479.2,
  year={2019},
  doi={10.1017/9781108877855.004},
  title={Positivity Certificates via Integral Representations},
  isbn={978-1-108-87785-5},
  publisher={Cambridge University Press},
  address={Cambridge},
  booktitle={Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2},
  pages={84--114},
  editor={Aluffi, Paolo and Anderson, David and Hering, Milena},
  author={Kozhasov, Khazhgali and Michalek, Mateusz and Sturmfels, Bernd}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55479.2">
    <dcterms:issued>2019</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55479.2"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T13:43:50Z</dcterms:available>
    <dc:creator>Kozhasov, Khazhgali</dc:creator>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Complete monotonicity is a strong positivity property for real-valued functions on convex cones. It is certified by the kernel of the inverse Laplace transform. We study this for negative powers of hyperbolic polynomials. Here the certificate is the Riesz kernel in Garding's integral representation. The Riesz kernel is a hypergeometric function in the coefficients of the given polynomial. For monomials in linear forms, it is a Gel'fand-Aomoto hypergeometric function, related to volumes of polytopes. We establish complete monotonicity for sufficiently negative powers of elementary symmetric functions. We also show that small negative powers of these polynomials are not completely monotone, proving one direction of a conjecture by Scott and Sokal.</dcterms:abstract>
    <dc:creator>Sturmfels, Bernd</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T13:43:50Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kozhasov, Khazhgali</dc:contributor>
    <dcterms:title>Positivity Certificates via Integral Representations</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Sturmfels, Bernd</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2022-03-28 13:38:51
2021-11-08 15:16:27
* Ausgewählte Version