Positivity Certificates via Integral Representations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Complete monotonicity is a strong positivity property for real-valued functions on convex cones. It is certified by the kernel of the inverse Laplace transform. We study this for negative powers of hyperbolic polynomials. Here the certificate is the Riesz kernel in Garding's integral representation. The Riesz kernel is a hypergeometric function in the coefficients of the given polynomial. For monomials in linear forms, it is a Gel'fand-Aomoto hypergeometric function, related to volumes of polytopes. We establish complete monotonicity for sufficiently negative powers of elementary symmetric functions. We also show that small negative powers of these polynomials are not completely monotone, proving one direction of a conjecture by Scott and Sokal.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOZHASOV, Khazhgali, Mateusz MICHALEK, Bernd STURMFELS, 2019. Positivity Certificates via Integral Representations. In: ALUFFI, Paolo, ed., David ANDERSON, ed., Milena HERING, ed. and others. Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2. Cambridge: Cambridge University Press, 2019, pp. 84-114. ISBN 978-1-108-87785-5. Available under: doi: 10.1017/9781108877855.004BibTex
@incollection{Kozhasov2019Posit-55479.2, year={2019}, doi={10.1017/9781108877855.004}, title={Positivity Certificates via Integral Representations}, isbn={978-1-108-87785-5}, publisher={Cambridge University Press}, address={Cambridge}, booktitle={Facets of Algebraic Geometry : A Collection in Honor of William Fulton's 80th Birthday, Vol. 2}, pages={84--114}, editor={Aluffi, Paolo and Anderson, David and Hering, Milena}, author={Kozhasov, Khazhgali and Michalek, Mateusz and Sturmfels, Bernd} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55479.2"> <dcterms:issued>2019</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55479.2"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T13:43:50Z</dcterms:available> <dc:creator>Kozhasov, Khazhgali</dc:creator> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Complete monotonicity is a strong positivity property for real-valued functions on convex cones. It is certified by the kernel of the inverse Laplace transform. We study this for negative powers of hyperbolic polynomials. Here the certificate is the Riesz kernel in Garding's integral representation. The Riesz kernel is a hypergeometric function in the coefficients of the given polynomial. For monomials in linear forms, it is a Gel'fand-Aomoto hypergeometric function, related to volumes of polytopes. We establish complete monotonicity for sufficiently negative powers of elementary symmetric functions. We also show that small negative powers of these polynomials are not completely monotone, proving one direction of a conjecture by Scott and Sokal.</dcterms:abstract> <dc:creator>Sturmfels, Bernd</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-28T13:43:50Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kozhasov, Khazhgali</dc:contributor> <dcterms:title>Positivity Certificates via Integral Representations</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Sturmfels, Bernd</dc:contributor> </rdf:Description> </rdf:RDF>