Discriminative Closed Fragment Mining and Perfect Extensions in MoFa
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the past few years many algorithms for discovering frequent subgraphs in graph databases have been proposed. However, most of these methods are limited to finding only relatively small fragments or restrict the discovered structures in other ways, which makes them not very useful for applications in biochemistry. Recently the authors of the original gSpan algorithm have shown how the usage of closed fragments can considerably speed up their algorithm. However, the main limitation to small fragments still remains. In this paper we show how the more versatile search algorithm underlying MoFa can benefit greatly from using closed fragments as well and how the concept of perfect extensions quite naturally allows to prune the underlying search tree. We demonstrate how this results in speed-ups on the NCI’s HIV database.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MEINL, Thorsten, Christian BORGELT, Michael R. BERTHOLD, 2004. Discriminative Closed Fragment Mining and Perfect Extensions in MoFa. In: ONAINDIA, Eva, ed.. STAIRS 2004 : Proceedings of the Second Starting AI Researchers ' Symposium. Amsterdam: IOS Press, 2004, pp. 3-14. Frontiers in artificial intelligence and applications. 109. ISBN 1-58603-451-0BibTex
@inproceedings{Meinl2004Discr-24365, year={2004}, title={Discriminative Closed Fragment Mining and Perfect Extensions in MoFa}, number={109}, isbn={1-58603-451-0}, publisher={IOS Press}, address={Amsterdam}, series={Frontiers in artificial intelligence and applications}, booktitle={STAIRS 2004 : Proceedings of the Second Starting AI Researchers ' Symposium}, pages={3--14}, editor={Onaindia, Eva}, author={Meinl, Thorsten and Borgelt, Christian and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24365"> <dc:contributor>Borgelt, Christian</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In the past few years many algorithms for discovering frequent subgraphs in graph databases have been proposed. However, most of these methods are limited to finding only relatively small fragments or restrict the discovered structures in other ways, which makes them not very useful for applications in biochemistry. Recently the authors of the original gSpan algorithm have shown how the usage of closed fragments can considerably speed up their algorithm. However, the main limitation to small fragments still remains. In this paper we show how the more versatile search algorithm underlying MoFa can benefit greatly from using closed fragments as well and how the concept of perfect extensions quite naturally allows to prune the underlying search tree. We demonstrate how this results in speed-ups on the NCI’s HIV database.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24365"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Discriminative Closed Fragment Mining and Perfect Extensions in MoFa</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24365/2/Meinl_243653.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Borgelt, Christian</dc:creator> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:creator>Meinl, Thorsten</dc:creator> <dc:contributor>Meinl, Thorsten</dc:contributor> <dcterms:bibliographicCitation>STAIRS 2004 : Proceedings of the Second Starting AI Researchers' Symposium / Eva Onaindia (ed.). - Amsterdam : IOS Press, 2004. - S. 3-14. - (Frontiers in artificial intelligence and applications ; 109). - ISBN 1-58603-451-0</dcterms:bibliographicCitation> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24365/2/Meinl_243653.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-11T09:10:02Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-11T09:10:02Z</dcterms:available> <dcterms:issued>2004</dcterms:issued> </rdf:Description> </rdf:RDF>