Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 676580
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LANGER, Marcel F., Alex GOESSMANN, Matthias RUPP, 2022. Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. In: npj Computational Materials. Nature Publishing Group. 2022, 8(1), 41. eISSN 2057-3960. Available under: doi: 10.1038/s41524-022-00721-xBibTex
@article{Langer2022-12Repre-57047, year={2022}, doi={10.1038/s41524-022-00721-x}, title={Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning}, number={1}, volume={8}, journal={npj Computational Materials}, author={Langer, Marcel F. and Goeßmann, Alex and Rupp, Matthias}, note={Article Number: 41} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57047"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T11:59:27Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T11:59:27Z</dcterms:available> <dc:creator>Rupp, Matthias</dc:creator> <dc:creator>Goeßmann, Alex</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Goeßmann, Alex</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57047/1/Langer_2-xuq0viccdgzu0.pdf"/> <dcterms:title>Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning</dcterms:title> <dc:contributor>Langer, Marcel F.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57047"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57047/1/Langer_2-xuq0viccdgzu0.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Langer, Marcel F.</dc:creator> <dcterms:issued>2022-12</dcterms:issued> </rdf:Description> </rdf:RDF>