Publikation:

Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning

Lade...
Vorschaubild

Dateien

Langer_2-xuq0viccdgzu0.pdf
Langer_2-xuq0viccdgzu0.pdfGröße: 1.63 MBDownloads: 210

Datum

2022

Autor:innen

Langer, Marcel F.
Goeßmann, Alex

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 740233
European Union (EU): 676580

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

npj Computational Materials. Nature Publishing Group. 2022, 8(1), 41. eISSN 2057-3960. Available under: doi: 10.1038/s41524-022-00721-x

Zusammenfassung

Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LANGER, Marcel F., Alex GOESSMANN, Matthias RUPP, 2022. Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. In: npj Computational Materials. Nature Publishing Group. 2022, 8(1), 41. eISSN 2057-3960. Available under: doi: 10.1038/s41524-022-00721-x
BibTex
@article{Langer2022-12Repre-57047,
  year={2022},
  doi={10.1038/s41524-022-00721-x},
  title={Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning},
  number={1},
  volume={8},
  journal={npj Computational Materials},
  author={Langer, Marcel F. and Goeßmann, Alex and Rupp, Matthias},
  note={Article Number: 41}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57047">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T11:59:27Z</dc:date>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T11:59:27Z</dcterms:available>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:creator>Goeßmann, Alex</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Goeßmann, Alex</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57047/1/Langer_2-xuq0viccdgzu0.pdf"/>
    <dcterms:title>Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning</dcterms:title>
    <dc:contributor>Langer, Marcel F.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57047"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57047/1/Langer_2-xuq0viccdgzu0.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Langer, Marcel F.</dc:creator>
    <dcterms:issued>2022-12</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen