Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning

Lade...
Vorschaubild
Dateien
Langer_2-xuq0viccdgzu0.pdf
Langer_2-xuq0viccdgzu0.pdfGröße: 1.63 MBDownloads: 187
Datum
2022
Autor:innen
Langer, Marcel F.
Goeßmann, Alex
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
European Union (EU): 740233
European Union (EU): 676580
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
npj Computational Materials. Nature Publishing Group. 2022, 8(1), 41. eISSN 2057-3960. Available under: doi: 10.1038/s41524-022-00721-x
Zusammenfassung

Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690LANGER, Marcel F., Alex GOESSMANN, Matthias RUPP, 2022. Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning. In: npj Computational Materials. Nature Publishing Group. 2022, 8(1), 41. eISSN 2057-3960. Available under: doi: 10.1038/s41524-022-00721-x
BibTex
@article{Langer2022-12Repre-57047,
  year={2022},
  doi={10.1038/s41524-022-00721-x},
  title={Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning},
  number={1},
  volume={8},
  journal={npj Computational Materials},
  author={Langer, Marcel F. and Goeßmann, Alex and Rupp, Matthias},
  note={Article Number: 41}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57047">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T11:59:27Z</dc:date>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-29T11:59:27Z</dcterms:available>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:creator>Goeßmann, Alex</dc:creator>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Goeßmann, Alex</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al–Ga–In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57047/1/Langer_2-xuq0viccdgzu0.pdf"/>
    <dcterms:title>Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning</dcterms:title>
    <dc:contributor>Langer, Marcel F.</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57047"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57047/1/Langer_2-xuq0viccdgzu0.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Langer, Marcel F.</dc:creator>
    <dcterms:issued>2022-12</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen