Publikation:

Virtual tissue microstructure reconstruction across species using generative deep learning

Lade...
Vorschaubild

Dateien

Bettancourt_2-y35ldoyrscht1.pdf
Bettancourt_2-y35ldoyrscht1.pdfGröße: 2.23 MBDownloads: 10

Datum

2024

Autor:innen

Bettancourt, Nicolás
Pérez-Gallardo, Cristian
Candia, Valeria
Guevara, Pamela
Kalaidzidis, Yannis
Zerial, Marino
Segovia-Miranda, Fabián

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLOS ONE. Public Library of Science (PLoS). 2024, 19(7), e0306073. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0306073

Zusammenfassung

Analyzing tissue microstructure is essential for understanding complex biological systems in different species. Tissue functions largely depend on their intrinsic tissue architecture. Therefore, studying the three-dimensional (3D) microstructure of tissues, such as the liver, is particularly fascinating due to its conserved essential roles in metabolic processes and detoxification. Here, we present TiMiGNet, a novel deep learning approach for virtual 3D tissue microstructure reconstruction using Generative Adversarial Networks and fluorescence microscopy. TiMiGNet overcomes challenges such as poor antibody penetration and time-intensive procedures by generating accurate, high-resolution predictions of tissue components across large volumes without the need of paired images as input. We applied TiMiGNet to analyze tissue microstructure in mouse and human liver tissue. TiMiGNet shows high performance in predicting structures like bile canaliculi, sinusoids, and Kupffer cell shapes from actin meshwork images. Remarkably, using TiMiGNet we were able to computationally reconstruct tissue structures that cannot be directly imaged due experimental limitations in deep dense tissues, a significant advancement in deep tissue imaging. Our open-source virtual prediction tool facilitates accessible and efficient multi-species tissue microstructure analysis, accommodating researchers with varying expertise levels. Overall, our method represents a powerful approach for studying tissue microstructure, with far-reaching applications in diverse biological contexts and species.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BETTANCOURT, Nicolás, Cristian PÉREZ-GALLARDO, Valeria CANDIA, Pamela GUEVARA, Yannis KALAIDZIDIS, Marino ZERIAL, Fabián SEGOVIA-MIRANDA, Hernán MORALES-NAVARRETE, 2024. Virtual tissue microstructure reconstruction across species using generative deep learning. In: PLOS ONE. Public Library of Science (PLoS). 2024, 19(7), e0306073. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0306073
BibTex
@article{Bettancourt2024-07-12Virtu-70537,
  year={2024},
  doi={10.1371/journal.pone.0306073},
  title={Virtual tissue microstructure reconstruction across species using generative deep learning},
  number={7},
  volume={19},
  journal={PLOS ONE},
  author={Bettancourt, Nicolás and Pérez-Gallardo, Cristian and Candia, Valeria and Guevara, Pamela and Kalaidzidis, Yannis and Zerial, Marino and Segovia-Miranda, Fabián and Morales-Navarrete, Hernán},
  note={Article Number: e0306073}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70537">
    <dc:creator>Morales-Navarrete, Hernán</dc:creator>
    <dcterms:title>Virtual tissue microstructure reconstruction across species using generative deep learning</dcterms:title>
    <dc:contributor>Kalaidzidis, Yannis</dc:contributor>
    <dcterms:issued>2024-07-12</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Zerial, Marino</dc:creator>
    <dc:contributor>Bettancourt, Nicolás</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Segovia-Miranda, Fabián</dc:contributor>
    <dc:creator>Segovia-Miranda, Fabián</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70537/1/Bettancourt_2-y35ldoyrscht1.pdf"/>
    <dcterms:abstract>Analyzing tissue microstructure is essential for understanding complex biological systems in different species. Tissue functions largely depend on their intrinsic tissue architecture. Therefore, studying the three-dimensional (3D) microstructure of tissues, such as the liver, is particularly fascinating due to its conserved essential roles in metabolic processes and detoxification. Here, we present TiMiGNet, a novel deep learning approach for virtual 3D tissue microstructure reconstruction using Generative Adversarial Networks and fluorescence microscopy. TiMiGNet overcomes challenges such as poor antibody penetration and time-intensive procedures by generating accurate, high-resolution predictions of tissue components across large volumes without the need of paired images as input. We applied TiMiGNet to analyze tissue microstructure in mouse and human liver tissue. TiMiGNet shows high performance in predicting structures like bile canaliculi, sinusoids, and Kupffer cell shapes from actin meshwork images. Remarkably, using TiMiGNet we were able to computationally reconstruct tissue structures that cannot be directly imaged due experimental limitations in deep dense tissues, a significant advancement in deep tissue imaging. Our open-source virtual prediction tool facilitates accessible and efficient multi-species tissue microstructure analysis, accommodating researchers with varying expertise levels. Overall, our method represents a powerful approach for studying tissue microstructure, with far-reaching applications in diverse biological contexts and species.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Morales-Navarrete, Hernán</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70537"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Guevara, Pamela</dc:creator>
    <dc:creator>Bettancourt, Nicolás</dc:creator>
    <dc:contributor>Zerial, Marino</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T09:03:33Z</dc:date>
    <dc:creator>Pérez-Gallardo, Cristian</dc:creator>
    <dc:contributor>Guevara, Pamela</dc:contributor>
    <dc:creator>Candia, Valeria</dc:creator>
    <dc:contributor>Pérez-Gallardo, Cristian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Candia, Valeria</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T09:03:33Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70537/1/Bettancourt_2-y35ldoyrscht1.pdf"/>
    <dc:creator>Kalaidzidis, Yannis</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen