Publikation: Virtual tissue microstructure reconstruction across species using generative deep learning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Analyzing tissue microstructure is essential for understanding complex biological systems in different species. Tissue functions largely depend on their intrinsic tissue architecture. Therefore, studying the three-dimensional (3D) microstructure of tissues, such as the liver, is particularly fascinating due to its conserved essential roles in metabolic processes and detoxification. Here, we present TiMiGNet, a novel deep learning approach for virtual 3D tissue microstructure reconstruction using Generative Adversarial Networks and fluorescence microscopy. TiMiGNet overcomes challenges such as poor antibody penetration and time-intensive procedures by generating accurate, high-resolution predictions of tissue components across large volumes without the need of paired images as input. We applied TiMiGNet to analyze tissue microstructure in mouse and human liver tissue. TiMiGNet shows high performance in predicting structures like bile canaliculi, sinusoids, and Kupffer cell shapes from actin meshwork images. Remarkably, using TiMiGNet we were able to computationally reconstruct tissue structures that cannot be directly imaged due experimental limitations in deep dense tissues, a significant advancement in deep tissue imaging. Our open-source virtual prediction tool facilitates accessible and efficient multi-species tissue microstructure analysis, accommodating researchers with varying expertise levels. Overall, our method represents a powerful approach for studying tissue microstructure, with far-reaching applications in diverse biological contexts and species.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BETTANCOURT, Nicolás, Cristian PÉREZ-GALLARDO, Valeria CANDIA, Pamela GUEVARA, Yannis KALAIDZIDIS, Marino ZERIAL, Fabián SEGOVIA-MIRANDA, Hernán MORALES-NAVARRETE, 2024. Virtual tissue microstructure reconstruction across species using generative deep learning. In: PLOS ONE. Public Library of Science (PLoS). 2024, 19(7), e0306073. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0306073BibTex
@article{Bettancourt2024-07-12Virtu-70537, year={2024}, doi={10.1371/journal.pone.0306073}, title={Virtual tissue microstructure reconstruction across species using generative deep learning}, number={7}, volume={19}, journal={PLOS ONE}, author={Bettancourt, Nicolás and Pérez-Gallardo, Cristian and Candia, Valeria and Guevara, Pamela and Kalaidzidis, Yannis and Zerial, Marino and Segovia-Miranda, Fabián and Morales-Navarrete, Hernán}, note={Article Number: e0306073} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70537"> <dc:creator>Morales-Navarrete, Hernán</dc:creator> <dcterms:title>Virtual tissue microstructure reconstruction across species using generative deep learning</dcterms:title> <dc:contributor>Kalaidzidis, Yannis</dc:contributor> <dcterms:issued>2024-07-12</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Zerial, Marino</dc:creator> <dc:contributor>Bettancourt, Nicolás</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Segovia-Miranda, Fabián</dc:contributor> <dc:creator>Segovia-Miranda, Fabián</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70537/1/Bettancourt_2-y35ldoyrscht1.pdf"/> <dcterms:abstract>Analyzing tissue microstructure is essential for understanding complex biological systems in different species. Tissue functions largely depend on their intrinsic tissue architecture. Therefore, studying the three-dimensional (3D) microstructure of tissues, such as the liver, is particularly fascinating due to its conserved essential roles in metabolic processes and detoxification. Here, we present TiMiGNet, a novel deep learning approach for virtual 3D tissue microstructure reconstruction using Generative Adversarial Networks and fluorescence microscopy. TiMiGNet overcomes challenges such as poor antibody penetration and time-intensive procedures by generating accurate, high-resolution predictions of tissue components across large volumes without the need of paired images as input. We applied TiMiGNet to analyze tissue microstructure in mouse and human liver tissue. TiMiGNet shows high performance in predicting structures like bile canaliculi, sinusoids, and Kupffer cell shapes from actin meshwork images. Remarkably, using TiMiGNet we were able to computationally reconstruct tissue structures that cannot be directly imaged due experimental limitations in deep dense tissues, a significant advancement in deep tissue imaging. Our open-source virtual prediction tool facilitates accessible and efficient multi-species tissue microstructure analysis, accommodating researchers with varying expertise levels. Overall, our method represents a powerful approach for studying tissue microstructure, with far-reaching applications in diverse biological contexts and species.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Morales-Navarrete, Hernán</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70537"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Guevara, Pamela</dc:creator> <dc:creator>Bettancourt, Nicolás</dc:creator> <dc:contributor>Zerial, Marino</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T09:03:33Z</dc:date> <dc:creator>Pérez-Gallardo, Cristian</dc:creator> <dc:contributor>Guevara, Pamela</dc:contributor> <dc:creator>Candia, Valeria</dc:creator> <dc:contributor>Pérez-Gallardo, Cristian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Candia, Valeria</dc:contributor> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-05T09:03:33Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70537/1/Bettancourt_2-y35ldoyrscht1.pdf"/> <dc:creator>Kalaidzidis, Yannis</dc:creator> </rdf:Description> </rdf:RDF>