Publikation:

Stress correlation function and linear response of Brownian particles

Lade...
Vorschaubild

Dateien

Vogel_2-y5jj67k7kh4w6.pdf
Vogel_2-y5jj67k7kh4w6.pdfGröße: 212.87 KBDownloads: 212

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The European Physical Journal E : Soft Matter and Biological Physics. Springer. 2020, 43, 70. ISSN 1292-8941. eISSN 1292-895X. Available under: doi: 10.1140/epje/i2020-11993-4

Zusammenfassung

Abstract.We determine the non-local stress autocorrelation tensor in an homogeneous and isotropic systemof interacting Brownian particles starting from the Smoluchowski equation of the configurational probabil-ity density. In order to relate stresses to particle displacements as appropriate in viscoelastic states, we gobeyond the usual hydrodynamic description obtained in the Zwanzig-Mori projection-operator formalismby introducing the proper irreducible dynamics following Cichocki and Hess, andKawasaki. Differentlyfrom these authors, we include transverse contributions as well. This recovers theexpression for the stressautocorrelation including the elastic terms in solid states as found for Newtonian and Langevin systems, incase that those are evaluated in the overdamped limit. Finally, we arguethat the found memory functionreduces to the shear and bulk viscosity in the hydrodynamic limit of smooth and slow fluctuations andderive the corresponding hydrodynamic equations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690VOGEL, Florian, Matthias FUCHS, 2020. Stress correlation function and linear response of Brownian particles. In: The European Physical Journal E : Soft Matter and Biological Physics. Springer. 2020, 43, 70. ISSN 1292-8941. eISSN 1292-895X. Available under: doi: 10.1140/epje/i2020-11993-4
BibTex
@article{Vogel2020Stres-51872,
  year={2020},
  doi={10.1140/epje/i2020-11993-4},
  title={Stress correlation function and linear response of Brownian particles},
  volume={43},
  issn={1292-8941},
  journal={The European Physical Journal E : Soft Matter and Biological Physics},
  author={Vogel, Florian and Fuchs, Matthias},
  note={Article Number: 70}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51872">
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51872/3/Vogel_2-y5jj67k7kh4w6.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51872"/>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-18T15:36:06Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Vogel, Florian</dc:contributor>
    <dcterms:title>Stress correlation function and linear response of Brownian particles</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-18T15:36:06Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51872/3/Vogel_2-y5jj67k7kh4w6.pdf"/>
    <dcterms:issued>2020</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">Abstract.We determine the non-local stress autocorrelation tensor in an homogeneous and isotropic systemof interacting Brownian particles starting from the Smoluchowski equation of the configurational probabil-ity density. In order to relate stresses to particle displacements as appropriate in viscoelastic states, we gobeyond the usual hydrodynamic description obtained in the Zwanzig-Mori projection-operator formalismby introducing the proper irreducible dynamics following Cichocki and Hess, andKawasaki. Differentlyfrom these authors, we include transverse contributions as well. This recovers theexpression for the stressautocorrelation including the elastic terms in solid states as found for Newtonian and Langevin systems, incase that those are evaluated in the overdamped limit. Finally, we arguethat the found memory functionreduces to the shear and bulk viscosity in the hydrodynamic limit of smooth and slow fluctuations andderive the corresponding hydrodynamic equations.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dc:creator>Vogel, Florian</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen