Publikation: Regulation of Alzheimer’s disease-relevant protein processing in human neurons of the LUHMES cell line
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Alzheimer’s disease (AD) is a neurodegenerative disorder, whose major pathologies are the excessive generation of amyloid beta (Abeta) peptides and the aberrant phosphorylation of tau proteins. AD exists most commonly as sporadic form (SAD) without hereditary background (SAD). Interestingly, the level and/or activity of BACE, an enzyme crucially involved in Abeta generation, appears to be elevated in SAD brains. In order to replicate the disease states, transgenic mouse models and cell lines have been generated. Yet, the transfer of results from animals to humans is difficult and cell lines often lack neuronal properties or exhibit only weak endogenous expression of key proteins. As new approach in the framework of this doctoral thesis, we used human neurons, differentiated in vitro from the LUHMES cell line.
Initially, we established a new 2-step differentiation protocol. We showed that by this procedure, the precursor cells irreversibly converted into post-mitotic neurons within 5 days, accompanied by an extensive outgrowth of neurites and the upregulation of synaptic proteins. It was possible to trigger neuronal differentiation even in the absence of the medium factors cAMP and GDNF, but the expression of some dopaminergic markers and the production of dopamine depended on the presence of cAMP. Thereby, we described for the first time LUHMES with a ‘non-dopaminergic’ phenotype, which are suitable for applications in various research fields. Next, we characterized LUHMES as human model for AD-relevant studies. We investigated how the expression and interaction of key proteins like amyloid precursor protein (APP) and BACE were regulated. During long-term cell culture (10 days), we observed that Abeta generation and tau phosphorylation continuously increased, and that both could be pharmacologically or biologically modulated like in primary neurons. We also revealed that the Abeta increase was induced through activation of the RET receptor by growth factors such as GDNF, and that the PI3K pathway downstream of RET was involved. These data indicate that a growth factor elevation, e.g. as defense mechanism in the AD brain, can lead to further augmentation of Abeta production. Finally, we established a stable BACE-overexpressing LUHMES cell line in order to mimic SAD conditions. Interestingly, BACE overexpression was not constitutive but progressively increased during differentiation of the cells, resulting in a correspondingly enhanced beta-cleavage of APP. However, while moderate BACE overexpression was linked to strong Abeta production as expected, BACE levels above a certain threshold prompted the cells to generate significantly less Abeta than wildtype LUHMES. In addition, the reduction of BACE activity in these cells, e.g. by treatment with low concentrations of BACE inhibitors, led to a strong rise in Abeta. These findings contribute to the understanding of the complex biology of APP processing and may have implications for the development of partial BACE inhibitors as AD therapeutic.
Zusammenfassung in einer weiteren Sprache
Morbus Alzheimer (MA) ist eine neurodegenerative Erkrankung, die mit übermäßiger Generierung von Amyloid beta (Abeta) Peptiden und abnormaler Phosphorylierung von Tau Proteinen einhergeht. MA kommt am häufigsten als nicht erblich bedingte, sporadische Variante vor (SMA). Interessanterweise scheint die Menge und/oder Aktivität von BACE, eines Enzyms welches entscheidend an der Abeta Herstellung beteiligt ist, in SMA Gehirnen erhöht zu sein. Bisherige Untersuchungen nutzten transgene Mausmodelle oder Zelllinien, jedoch ist die Übertragbarkeit der Ergebnisse vom Tier auf den Menschen fraglich, und Zelllinien besitzen nur bedingt neuronale Eigenschaften. Als neuen Ansatz im Rahmen dieser Doktorarbeit verwendeten wir deshalb die LUHMES Zelllinie, welche in vitro in humane Neuronen ausdifferenziert werden kann. Zunächst etablierten wir ein neues, 2-stufiges Differenzierungsprotokoll. Wir konnten zeigen, dass sich die Vorläuferzellen innerhalb von 5 Tagen irreversibel in postmitotische Neuronen umwandelten, begleitet von ausgedehntem Neuritenwachstum und der Hochregulierung synaptischer Proteine. Die neuronale Differenzierung wurde sowohl mit als auch ohne die Mediumsfaktoren cAMP und GDNF ausgelöst, aber die zelluläre Produktion von Dopamin erforderte die Präsenz von cAMP. Dabei beschrieben wir erstmals “nicht-dopaminerge“ LUHMES Neuronen, deren Einsatz für verschiedenste Forschungsgebiete von Vorteil ist. Im nächsten Schritt charakterisierten wird LUHMES als humanes Modell für MA-relevante Studien. Wir untersuchten die Expression und Interaktion von Schlüsselproteinen wie Amyloid Precursor Protein (APP) und BACE. Während der Langzeit-Zellkultur (10 Tage) stellten wir fest, dass sowohl die Abeta Produktion als auch die Phosphorylierung von Tau beständig zunahmen, und dass beide mit pharmakologischen Substanzen wie in Primärneuronen moduliert werden konnten. Weiterhin fanden wir heraus, dass der Abeta Zunahme eine Aktivierung des RET Rezeptors und damit des PI3K Signalwegs durch Wachstumsfaktoren wie GDNF zugrunde lag. Das bedeutet, dass durch einen Anstieg von Wachstumsfaktoren, z.B. als Schutzmechanismus im MA Gehirn, die Abeta Produktion weiter erhöht werden kann. Schließlich etablierten wir eine stabile LUHMES Zelllinie mit BACE-Überexpression, um seine erhöhte Aktivität bei SMA zu modellieren. Während der Differenzierung stieg der BACE Level stetig an, was in einer entsprechend verstärkten beta-Prozessierung von APP, und zunächst auch in erhöhter Abeta Produktion resultierte. Nach Überschreiten eines bestimmten BACE-Grenzwertes jedoch stellten die Zellen erheblich weniger Abeta als Wildtyp LUHMES her. In diesen Zellen führte eine Abschwächung der BACE Aktivität, etwa durch Behandlung mit niedrig dosierten BACE Inhibitoren, zu einem Anstieg von Abeta. Diese Ergebnisse steuern zum Verständnis der komplexen Biologie der APP Prozessierung bei und könnten Auswirkungen auf die Entwicklung von partiellen BACE Inhibitoren als MA Therapeutika haben.
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHOLZ, Diana, 2011. Regulation of Alzheimer’s disease-relevant protein processing in human neurons of the LUHMES cell line [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Scholz2011Regul-17391, year={2011}, title={Regulation of Alzheimer’s disease-relevant protein processing in human neurons of the LUHMES cell line}, author={Scholz, Diana}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17391"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-11-27T23:25:05Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Scholz, Diana</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-12-13T12:23:26Z</dc:date> <dcterms:abstract xml:lang="eng">Alzheimer’s disease (AD) is a neurodegenerative disorder, whose major pathologies are the excessive generation of amyloid beta (Abeta) peptides and the aberrant phosphorylation of tau proteins. AD exists most commonly as sporadic form (SAD) without hereditary background (SAD). Interestingly, the level and/or activity of BACE, an enzyme crucially involved in Abeta generation, appears to be elevated in SAD brains. In order to replicate the disease states, transgenic mouse models and cell lines have been generated. Yet, the transfer of results from animals to humans is difficult and cell lines often lack neuronal properties or exhibit only weak endogenous expression of key proteins. As new approach in the framework of this doctoral thesis, we used human neurons, differentiated in vitro from the LUHMES cell line.<br /><br />Initially, we established a new 2-step differentiation protocol. We showed that by this procedure, the precursor cells irreversibly converted into post-mitotic neurons within 5 days, accompanied by an extensive outgrowth of neurites and the upregulation of synaptic proteins. It was possible to trigger neuronal differentiation even in the absence of the medium factors cAMP and GDNF, but the expression of some dopaminergic markers and the production of dopamine depended on the presence of cAMP. Thereby, we described for the first time LUHMES with a ‘non-dopaminergic’ phenotype, which are suitable for applications in various research fields. Next, we characterized LUHMES as human model for AD-relevant studies. We investigated how the expression and interaction of key proteins like amyloid precursor protein (APP) and BACE were regulated. During long-term cell culture (10 days), we observed that Abeta generation and tau phosphorylation continuously increased, and that both could be pharmacologically or biologically modulated like in primary neurons. We also revealed that the Abeta increase was induced through activation of the RET receptor by growth factors such as GDNF, and that the PI3K pathway downstream of RET was involved. These data indicate that a growth factor elevation, e.g. as defense mechanism in the AD brain, can lead to further augmentation of Abeta production. Finally, we established a stable BACE-overexpressing LUHMES cell line in order to mimic SAD conditions. Interestingly, BACE overexpression was not constitutive but progressively increased during differentiation of the cells, resulting in a correspondingly enhanced beta-cleavage of APP. However, while moderate BACE overexpression was linked to strong Abeta production as expected, BACE levels above a certain threshold prompted the cells to generate significantly less Abeta than wildtype LUHMES. In addition, the reduction of BACE activity in these cells, e.g. by treatment with low concentrations of BACE inhibitors, led to a strong rise in Abeta. These findings contribute to the understanding of the complex biology of APP processing and may have implications for the development of partial BACE inhibitors as AD therapeutic.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17391/2/Doktorarbeit_Scholz.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17391/2/Doktorarbeit_Scholz.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17391"/> <dc:contributor>Scholz, Diana</dc:contributor> <dcterms:title>Regulation of Alzheimer’s disease-relevant protein processing in human neurons of the LUHMES cell line</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:issued>2011</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> </rdf:Description> </rdf:RDF>