Publikation: Mining Rare Associations between Biological Ontologies
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BENITES, Fernando, Svenja SIMON, Elena SAPOZHNIKOVA, 2014. Mining Rare Associations between Biological Ontologies. In: PLoS ONE. 2014, 9(1), e84475. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0084475BibTex
@article{Benites2014Minin-25760, year={2014}, doi={10.1371/journal.pone.0084475}, title={Mining Rare Associations between Biological Ontologies}, number={1}, volume={9}, journal={PLoS ONE}, author={Benites, Fernando and Simon, Svenja and Sapozhnikova, Elena}, note={Article Number: e84475} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25760"> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T11:07:02Z</dcterms:available> <dc:creator>Benites, Fernando</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T11:07:02Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:bibliographicCitation>PLoS ONE ; 9 (2014), 1. - e84475</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dc:contributor>Simon, Svenja</dc:contributor> <dcterms:issued>2014</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25760"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25760/1/Benites_257600.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25760/1/Benites_257600.pdf"/> <dc:creator>Sapozhnikova, Elena</dc:creator> <dcterms:title>Mining Rare Associations between Biological Ontologies</dcterms:title> <dc:contributor>Benites, Fernando</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Simon, Svenja</dc:creator> </rdf:Description> </rdf:RDF>