Publikation:

Mining Rare Associations between Biological Ontologies

Lade...
Vorschaubild

Dateien

Benites_257600.pdf
Benites_257600.pdfGröße: 428.03 KBDownloads: 232

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

DAMIART
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS ONE. 2014, 9(1), e84475. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0084475

Zusammenfassung

The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690BENITES, Fernando, Svenja SIMON, Elena SAPOZHNIKOVA, 2014. Mining Rare Associations between Biological Ontologies. In: PLoS ONE. 2014, 9(1), e84475. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0084475
BibTex
@article{Benites2014Minin-25760,
  year={2014},
  doi={10.1371/journal.pone.0084475},
  title={Mining Rare Associations between Biological Ontologies},
  number={1},
  volume={9},
  journal={PLoS ONE},
  author={Benites, Fernando and Simon, Svenja and Sapozhnikova, Elena},
  note={Article Number: e84475}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25760">
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T11:07:02Z</dcterms:available>
    <dc:creator>Benites, Fernando</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-13T11:07:02Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:bibliographicCitation>PLoS ONE ; 9 (2014), 1. - e84475</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dc:contributor>Simon, Svenja</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25760"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25760/1/Benites_257600.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25760/1/Benites_257600.pdf"/>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <dcterms:title>Mining Rare Associations between Biological Ontologies</dcterms:title>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Simon, Svenja</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen