Publikation:

Symmetric-Convex Functionals of Linear Growth

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Elliptic and Parabolic Equations. Springer. 2016, 2(1-2), pp. 59-71. ISSN 2296-9020. eISSN 2296-9039. Available under: doi: 10.1007/BF03377392

Zusammenfassung

We discuss existence and regularity theorems for convex functionals of linear growth that depend on the symmetric rather than the full gradients. Due to the failure Korn’s Inequality in the L1-setup, the full weak gradients of minima do not need to exist, and the paper aims for presenting methods that help to overcome these issues as to partial regularity and higher integrability of minimisers.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Functionals of Linear Growth, Regularity Theory, Functions of Bounded Deformation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GMEINEDER, Franz, 2016. Symmetric-Convex Functionals of Linear Growth. In: Journal of Elliptic and Parabolic Equations. Springer. 2016, 2(1-2), pp. 59-71. ISSN 2296-9020. eISSN 2296-9039. Available under: doi: 10.1007/BF03377392
BibTex
@article{Gmeineder2016Symme-53932,
  year={2016},
  doi={10.1007/BF03377392},
  title={Symmetric-Convex Functionals of Linear Growth},
  number={1-2},
  volume={2},
  issn={2296-9020},
  journal={Journal of Elliptic and Parabolic Equations},
  pages={59--71},
  author={Gmeineder, Franz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53932">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Gmeineder, Franz</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T12:00:23Z</dc:date>
    <dcterms:abstract xml:lang="eng">We discuss existence and regularity theorems for convex functionals of linear growth that depend on the symmetric rather than the full gradients. Due to the failure Korn’s Inequality in the L&lt;sup&gt;1&lt;/sup&gt;-setup, the full weak gradients of minima do not need to exist, and the paper aims for presenting methods that help to overcome these issues as to partial regularity and higher integrability of minimisers.</dcterms:abstract>
    <dcterms:title>Symmetric-Convex Functionals of Linear Growth</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T12:00:23Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53932"/>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Gmeineder, Franz</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen