Publikation: Symmetric-Convex Functionals of Linear Growth
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Elliptic and Parabolic Equations. Springer. 2016, 2(1-2), pp. 59-71. ISSN 2296-9020. eISSN 2296-9039. Available under: doi: 10.1007/BF03377392
Zusammenfassung
We discuss existence and regularity theorems for convex functionals of linear growth that depend on the symmetric rather than the full gradients. Due to the failure Korn’s Inequality in the L1-setup, the full weak gradients of minima do not need to exist, and the paper aims for presenting methods that help to overcome these issues as to partial regularity and higher integrability of minimisers.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Functionals of Linear Growth, Regularity Theory, Functions of Bounded Deformation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
GMEINEDER, Franz, 2016. Symmetric-Convex Functionals of Linear Growth. In: Journal of Elliptic and Parabolic Equations. Springer. 2016, 2(1-2), pp. 59-71. ISSN 2296-9020. eISSN 2296-9039. Available under: doi: 10.1007/BF03377392BibTex
@article{Gmeineder2016Symme-53932, year={2016}, doi={10.1007/BF03377392}, title={Symmetric-Convex Functionals of Linear Growth}, number={1-2}, volume={2}, issn={2296-9020}, journal={Journal of Elliptic and Parabolic Equations}, pages={59--71}, author={Gmeineder, Franz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53932"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Gmeineder, Franz</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T12:00:23Z</dc:date> <dcterms:abstract xml:lang="eng">We discuss existence and regularity theorems for convex functionals of linear growth that depend on the symmetric rather than the full gradients. Due to the failure Korn’s Inequality in the L<sup>1</sup>-setup, the full weak gradients of minima do not need to exist, and the paper aims for presenting methods that help to overcome these issues as to partial regularity and higher integrability of minimisers.</dcterms:abstract> <dcterms:title>Symmetric-Convex Functionals of Linear Growth</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T12:00:23Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53932"/> <dcterms:issued>2016</dcterms:issued> <dc:creator>Gmeineder, Franz</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt